Trans-aortic TAVI: A viable Alternative

Kevin Kam

Alex Lee

Adrian Cheong

Simon Chan

Eugene Wu

Michael Reardon

Randolph Wong

Innes Wan

Gary Cheung

Dr Randolph HL Wong MBChB, FRCSEd(CTh), FCSHK, FHKAM, FCCP Consultant Cardiac Surgeon Prince of Wales Hospital The Chinese University of Hong Kong

Why trans-aortic route?

30% of patients have unfavourable femoral anatomy in one of the early study

> Henretta JP, Karch LA, Hodgson KJ, Mattos MA, Ramsey DE, McLafferty R, et al. Special iliac artery considerations during aneurysm endografting. Am J Surg. 1999;178:212–218. 10.1016/S0002-9610(99)00156-7

A 17 % TAVI requires alternative routes

Colin Baker, Michael Reardon. Alternative Access and Closure Options for TAVR. Cardiac Interventions Today Sep/Oct 2015

Our journey started from a challenging case

CL, F/82

Height 154cm, Weight 45kg

Past health:

- 🔹 DM, HT
- End stage renal failure, on peritoneal dialysis
- AF on warfarin
- IHD; PCI to dRCA in 2002, PCI to mLAD in 2010

History of present illness:

APO in 02/15, presented with progressive increase in SOB for few weeks.

Echo

Echo in 04/15: heavily calcified AV with severe AS (mean PG 60mmHg, AVA 0.4cm2), mild AR, moderate MR, mild TR; LVH with preserved LV systolic function, dilated LA

CT Aortogram

MEDTRONIC ANALYSIS

Femoral Access - Right

Femoral Access - Left

Direct Aortic Access

Coronary angiogram in 04/15: distal LM 50%, pLAD 80% proximal to mLAD stent, patent RCA stent

STS score 13.22%

Logistic EuroScore 24.61%

Challenges

- 1. Both femorals are very calcified and not suitable in size for TF access. Same as both subclavian arteries.
- The aortic root is very small and out of the recommended range for even the smallest 23mm CoreValve/Evolut R.
- The coronary take-off is on the lower end for both left and right. Sinus of valsalva is small as well. Leaflet calcification is mainly on the LCC.

Heart team meeting

Suggestion:

- high risk candidate for SAVR and CABG
- Recommend PCI to LM and LAD, then TAVI by direct aortic approach, as not suitable femoral or subclavian access.

Set up for direct aortic TAVI

01

02

Key O1 = Operator 1 O2 = Operator 2

Positioning

Surgical access

Parasternal incision

Partial sternotomy

Surgical exposure

J sternotomy

J sternotomy

Open and pericardium

Pericardial stay stitches

Purse-string sutures over distal ascending aorta

And and a second second

Purse string sutures

Multiple pledget felts 2-O Ticron purse string

2-O Ticron purse-string sutures

Femoral vein puncture

Procedure

After purse-strings and guarding wire to femoral vein (prepared for CPB)

Give systemic heparin

Aim ACT >250

Cell saver to the surgical field to reduce blood loss

Bend the needle to facilitate the insertion angle

Check the distance between the puncture site from aortic root

01-Jan-33 I-May-15 0:34:56 36/72

31 580

RAO 30° to see the entrance of the needle

Then LAO 10° to see the J wire and JR4 position

EE 20 DDO 50

2 x 6 Fr Sheaths placed

Secured and tied with a snugger

Preparation of 18 Fr Sheath

Preparation of the 18 Fr sheath

Silk Tie

Guarding ring

1 cm from the tip

Silk Tie

Guarding ring

1 cm from the tip

172411

Introduction of Sheath

Tied down the 18 Fr Sheath with snugger and anchored to skin

Baseline Aortogram

Wire crossing AV

Simultaneous pressure measurement: Ao 81/31, LV 125/8

Inserting 18Fr Cook Sheath over Confida wire Checking the loaded Evolut R Bioprosthesis over the chest wall

BAV by 15mm balloon under rapid pacing 150bpm

First position checking

Further valve deployment Courtesy of Dr Gary Cheung

Final position checking before the point of no return Final part of valve deployment Courtesy of Dr Gary Cheung

Aortogram at RAO

Aortogram at LAO Courtesy of Dr Gary Cheung

Closing capsule

Simultaneous pressure: Ao 105/31, LV 130/4

Postdilatation by 15mmPostdilatation by 16mmballoonballoon

Simultaneous pressure: Ao 93/29, LV 86/9

Final Aortogram Courtesy of Dr Gary Cheung

Removal of sheath and tie down purse string sutures

Sternal closure

I9 Blake drain placed in pericardial space
 Sternum closed with sternal wire
 Figure of 8 x 1
 Single loop x 1

Skin closed with Vicryl 1 and 3-O Vicryl

Drain exit site

Progress

Extubated on the same day.
Stayed in ICU for one day.
Off temp. pacing at day 3.
Discharge home on day 8.

1 Month FU TEE

1 Month FU TEE

Direct aortic TAVI program at

Table 1. Baseline characteristics of patients

Baseline Characteristics (n= 5)	No. (%)
Age (yr)	78.4 +/- 3.9
Gender	
Male	3(60)
Female	2(40)
STS PROM (%)*	7.02
NYHA Class III – IV ^A	3(60)
Comorbidities	
History of Stroke	1(20)
Coronary artery disease	4(80)
Chronic renal failure requiring dialysis	1(20)
Diabetes Mellitus	3(60)
Peripheral vascular disease	2(40)
Echocardiogram Features	
Mean LVEF (%) *	63 +/- 0.05
Mean gradient (mmHg)	63.2+/-12.4
Mean AVA (cm ²) §	0.62+/-0.18
Moderate to severe mitral regurgitation	2(40)
*Society of thoracic surgeons predicted risk of mortality ex ^ New York heart association heart failure classification # Left ventricular ejection fraction	pressed in percentage

§ Aortic valve area

Table 2. Procedural information for direct aortic TAVI

Procedural information (n=5)	No. (%)
Approach	
Right parasternal mini-thoracotomy	4 (80)
Upper J partial sternotomy	1 (20)
Valve size implanted	
Evolut R Corevalve 23mm	1 (20)
Evolut R Corevalve 26mm	1 (20)
Evolut R Corevalve 29mm	3 (60)
Total procedural time (mins)	171.4+/-16.9
Aborted procedure	0
Converted to full sternotomy	0
Reoperation for bleeding	1 (20)
Intraprocedural mortality	0
Vascular access complications*	1 (20)
Aortic dissection / perforation	0

*Aortic sheath insertion site bleeding leading to reoperation for hemostasis

Parasternal incision

antendentendentendentendententen

Parameters	No. (%)		
	At Discharge	3 months	
Death	0	0	
All cause mortality	0	0	
Cardiac related mortality	0	0	
Stroke / TIA	1 (20)	1 (20)	
Acute kidney injury requiring Renal replacement therapy	2 (40)	2 (40)	
Myocardial infarction	0	0	
Major bleeding complication #	1 (20)	1 (20)	
Major vascular access complications	1 (20)	1 (20)	
Endocarditis	0	0	
Pacemaker implantation	0	0	
Post implantation immediate LV systolic to aortic pressure gradient (mmHg)	0.4 mmHg		
Echocardiographic findings at 1 month ^			
Mean LVEF (mmHg)	57 +/- 0.03		
Mean AV gradient (mmHg)	8.3 +/- 5.2		
Mean AVA (cm ²)	2.2 +/- 0.6		
Paravalvular regurgitation (more than mild)	0		
Valve thrombosis	0		
Readmission for valve intervention since discharge	0		

Table 3. Echocardiographic and clinical outcomes*

Conclusion

- A significant portion of patients in Asian has limited peripheral access for TAVI
- Direct aortic TAVI is a good alterative when peripheral access is not favourable
- Heart team approach with allow versatile patientspecific access selection

Acknowledgement

Cardiology team

- Dr Eugene Wu
- Dr Gary Cheung
- Dr Adrian Cheong
- Prof PW Lee
- Anaesthestic team
 - Dr Simon Chan
 - 🔹 Dr Sylvia Au