Compression of the Ostia of the Side-branch Coronary Arteries by Different Types of Main-branch Plaques

Jilin Chen
Cardiovascular Institute & Fuwai Hospital
Chinese Academy of Medical Sciences
Chen’s classification for bifurcation lesions

<table>
<thead>
<tr>
<th>Type</th>
<th>Ia</th>
<th>Ib</th>
<th>Ic</th>
<th>Id</th>
<th>Ie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Frequency for subtypes of bifurcation lesions (\(n=300\))

<table>
<thead>
<tr>
<th>Subtypes</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (％)</td>
<td>31.3</td>
<td>9.0</td>
<td>17.7</td>
<td>4.7</td>
<td>1.3</td>
<td>63.8</td>
</tr>
<tr>
<td>II (％)</td>
<td>8.3</td>
<td>6.3</td>
<td>11.3</td>
<td>4.0</td>
<td>0.7</td>
<td>30.5</td>
</tr>
<tr>
<td>III (％)</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.7</td>
</tr>
</tbody>
</table>
Objectives

To explore the best route and treatment

Strategy for bifurcation lesions in

coronary heart disease patients
135 patients with type II bifur.L who received a single DES in main vessel (MV) were selected in this study. Including:

LAD/Diag. bifurcation lesions in 86 cases

LM distal bifurcations lesions in 49 cases
Compression of the side-branch ostium after placement of the main-branch stent in type II bifurcation lesions

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cases</td>
<td></td>
<td>42</td>
<td>22</td>
<td>58</td>
<td>12</td>
</tr>
<tr>
<td>MV stenosis before stenting</td>
<td></td>
<td>85.48±5.54</td>
<td>85.45±7.52</td>
<td>84.64±7.73</td>
<td>84.58±7.20</td>
</tr>
<tr>
<td>Increased stenosis of the SB ostium after stenting in MV</td>
<td></td>
<td>48.74±20.50</td>
<td>36.36±18.71</td>
<td>40.55±19.63</td>
<td>24.00±11.56</td>
</tr>
</tbody>
</table>

Note: The differences between the groups were significant ($P<0.001$)

The incidence of acute occlusion in side branch is 1.5%
Compression of the Ostia SB in Type II a lesions
Compression of the Ostia SB in Type II b lesions
Compression of the Ostia SB in Type II c lesion
Compression of the Ostia SB in Type II d lesions
Compression of the Ostia SB in Type II d lesions
Compression of the Ostia SB Type Ie
Two key points about treatment strategy for bifur. L

1. Ostium of side branch is severe stenosis (≥50%) or not?

2. Diam. Of side branch is ≥2.5mm or <2.5mm
Bifur.L

Type I
- $\geq 2.5\text{mm}$, S.B. stenosis $\geq 70\%$
 - M.V DES
 - S.B DES (15–20\%)
 - Provisional stenting

- $\geq 2.5\text{mm}$
 - S.B. stenosis $< 70\%$
 - M.V DES
 - S.B. $< \text{TIMI} \text{III PTCA}$

Type II
- $< 2.5\text{mm}$
 - M.V DES
 - S.B leave alone
 - S.B. $> 70\%$ PTCA
Double DES

Angle $< 70^\circ$
- M.V
- Diam. \approx S.B
- Culotte
- M. Crush + kissing PTCA (R.M. Crush; M.T; TAP)

Angle $\geq 70^\circ$
- Kissing stents
 - Diam. of P.M.V $>$ (Diam. of D.M.V. + Diam. of S.B) x 0.67
 - V-stent (P.no lesion)
 - T stent or M.T