Clinical Considerations for CTO Revascularization

Whom to treat, Who derives benefit and What can we achieve?

David E. Kandzari, MD FACC, FSCAI
Director, Interventional Cardiology Research
Scripps Clinic
La Jolla, California
kandzari.david@scrippshealth.org

Disclosure: No conflict of interest
CTOs in Perspective

Despite novel technologies/DES, frequency of attempted CTOs has not changed over the past decade1,2

- Technical/procedural challenges
- Misperceptions regarding viability, collateral flow
- Uncertainty regarding which patients may benefit balanced by
- Concern for complications in patients who may not derive clinical benefit

SYNTAX CTO Prevalence3

Randomized Trial: 10% vs CABG Registry: 40%

Srinivas et al. Circulation 2002
Christofferson et al. Am J Cardiol 2005
Serruys et al. JACC Interven 2008
Frequency and Impact of Incomplete Coronary Revascularization

SYNTAX Trial

- SYNTAX CTO Prevalence

 Randomized Trial: 10% vs CABG Registry: 40%

- Complete Revascularization: 57% PCI vs 63% CABG (P=0.005)

New York State Database

- 68.9% of MVD patients undergoing PCI had incomplete revascularization

- 30.1% had CTOs and/or ≥2 diseased major vessels with incomplete revascularization

* Mortality highest in this subgroup (HR 1.36, 1.12-1.66)
Why the Occluded Artery Trial (OAT) Does Not Apply to CTO Revascularization

OAT: Subacute (3-28 days) total occlusions following MI

OAT: Relatively asymptomatic population excluding severe ischemia by functional study, rest angina and multivessel disease

Absence of improvement in LV function in OAT substudy

- Baseline LVEF 48% (difficult to improve upon relatively normal)
- Spontaneous recanalization (TIMI 2/3) observed at 1 year in 25% of medical therapy cohort
- Reocclusion in ~9% of PCI cohort; no DES
- Greatest predictor of improved LVEF was having a patent target vessel at 1 year follow up

Hochman et al. NEJM 2006
Dzavik et al. Circulation 2006
Theoretical Rationale for CTO Revascularization
‘Open Artery Hypothesis’

- Increase long-term survival
- Improve left ventricular function
- Electrical stability of myocardium and reduced predisposition to arrhythmic events
- Increased tolerance of future coronary occlusion events
Long-term Survival with Successful CTO Revascularization
Support for the Late Open Artery Hypothesis

<table>
<thead>
<tr>
<th>Trial</th>
<th>Success (N)</th>
<th>Failure (N)</th>
<th>Follow-up Duration (years)</th>
<th>Mortality (%)</th>
<th>Success</th>
<th>Failure</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>British Columbia Cardiac Registry¹</td>
<td>1118</td>
<td>340</td>
<td>6</td>
<td>10.0</td>
<td>19.0</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Suero et al.²</td>
<td>1491</td>
<td>514</td>
<td>10</td>
<td>26.0</td>
<td>35.0</td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>TOAST-GISE³</td>
<td>286</td>
<td>83</td>
<td>1</td>
<td>1.1</td>
<td>3.6</td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>Aziz et al.⁴</td>
<td>377</td>
<td>166</td>
<td>2.4</td>
<td>2.5</td>
<td>7.3</td>
<td></td>
<td>0.049</td>
</tr>
<tr>
<td>Hoye et al.⁵</td>
<td>568</td>
<td>306</td>
<td>5</td>
<td>6.5</td>
<td>12.0</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Valenti et al.⁵</td>
<td>344</td>
<td>142</td>
<td>2</td>
<td>91.6</td>
<td>87.4</td>
<td></td>
<td>0.025</td>
</tr>
</tbody>
</table>

Patient Selection
Clinical Considerations

- Is this patient symptomatic, and how? Angina? Heart failure? Arrhythmia?
- What is the chance of procedural success?
- Will successful recanalization improve this patient’s symptoms?
- Will successful recanalization improve this patient’s prognosis?
- What are the risks of attempted recanalization in this patient?
Recovery of LV Function After CTO Recanalization

Predictors of Improvement in LV Function

- Increase LVEF
 - Baseline LV dysfunction
 - Preserved microvasculature

- No Effect
 - Collateral development
 - Prior MI
 - Duration of occlusion
 - Nonocclusive restenosis

- Decrease LVEF
 - Reocclusion

Werner GS et al. Am Heart J 2005
Shifting Focus Downstream from CTOs
Insights to Myocardial Recovery Following CTO Recanalization

Signal Intensity-Time Curves and Stress Perfusion Images Demonstrating No Change in Hyperemic MBF in a Medically Managed Patient With a CTO

Cheng et al. JACC Intv 2008
Shifting Focus Downstream from CTOs
Insights to Myocardial Recovery Following CTO Recanalization

Signal Intensity-Time Curves and Stress Perfusion Images Demonstrating Changes in Hyperemic MBF After CTO PCI

Cheng et al. *JACC Intv* 2008
Principles of CTO Revascularization
Advanced Strategies and Technique

- Contralateral angiography
- Guiding catheter selection
- Mother-in-Child Technique

Identification of the entry with IVUS
Distinguish false and true lumen

Penetration vs Drilling
Parallel wire technique
Subintimal Tracking and Re-entry

Retrograde crossing
Kissing Wire
CART, Reverse CART, Wire Externalization

↑ Success vs.
↑ Complications
ACROSS – CYPHER

6 Month Angiographic Restenosis

- **TOSCA I - BMS** (n=202)
- **SES** (n=200)

In-treated-segment refers to length of contiguous target segment exposed to balloon inflation.
In-segment includes stented area plus 5 mm proximal and distal to stent.

- **55.2%** (33% absolute reduction) for TOSCA-I BMS
- **22.6%** (85% adjusted relative reduction) for SES

Kandzari et al. JACC Interv In press
CTO Revascularization and Late Clinical Benefit with DES: 2 year Survival

<table>
<thead>
<tr>
<th></th>
<th>CTO PCI Failure</th>
<th>CTO PCI Success</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>87.4 ± 2.9%</td>
<td>91.6 ± 2.0%</td>
<td>0.025</td>
</tr>
<tr>
<td>Single vessel disease (N=70)</td>
<td>93.3 ± 6.4%</td>
<td>93.6 ± 3.6%</td>
<td>0.986</td>
</tr>
<tr>
<td>Multi vessel disease (N=416)</td>
<td>86.6 ± 3.1%</td>
<td>91.4 ± 2.2%</td>
<td>0.021</td>
</tr>
</tbody>
</table>

Valenti et al. *Eur Heart J* 2008
Alternative to DES in CTO Revascularization: Drug-Eluting Balloon

PEPCAD CTO

- **Sample size:** 48 pts with *de novo* CTO, 2.5 to 4.0 mm RVD
- **Study design:** Non-randomized, single arm
- **Treatment:** Paclitaxel drug-eluting balloon (SeQuent Please) and bare metal stents
- **DAPT regimen:** 6 months
- **Primary Endpoint:** 6-month late loss compared with PACTO study historical control
- **Status:** TCT 2009 presentation

Source: www.clinicatrials.gov, Prof. Gerald Werner
Treatment of CTOs has introduced new benefits, new dilemmas

- Historical predictors of procedural success are ‘historic’
- Patient identification with non-invasive imaging
- Strut fracture and LSM may be more common; clinical implications uncertain

DES are a revolutionary step toward improving CTO outcomes (but there is need for technology to improve procedural success!)

- Aside from ↓ ABR, long term patency with DES may be associated with preservation of improved LV function
- Implications for technique: ↑ restenosis when less DES coverage

Despite more advanced strategies and technologies, there is little systematic evidence that procedural outcomes have changed for the better or worse

- New techniques, new complications
- Need CTO-specific clinical trials that better inform procedural outcomes