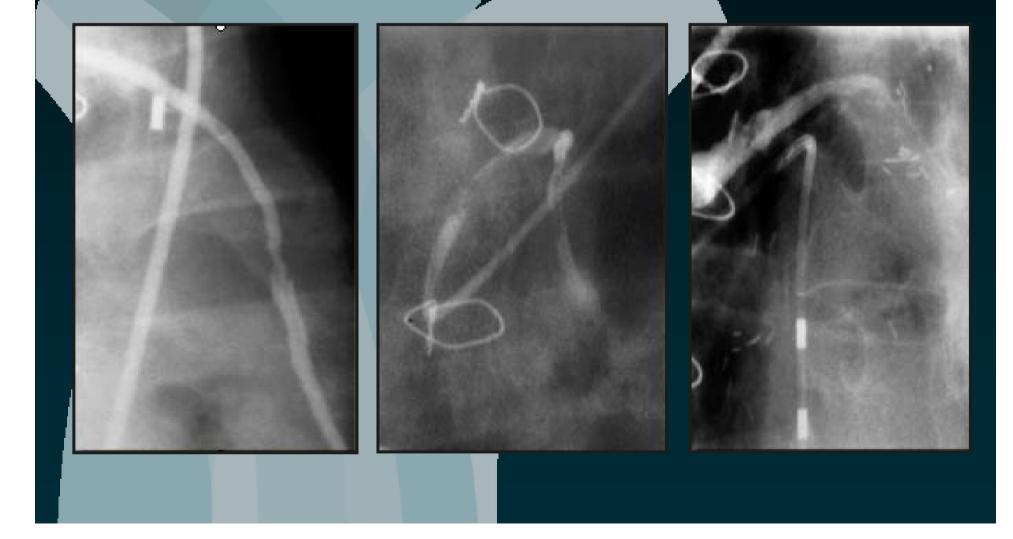

Drug-Eluting Stent for SVG lesions: Useful or Deleterious ?

T. Santoso Univ. of Indonesia Medical School Medistra Hospital Jakarta, Indonesia

Natural History of SVG

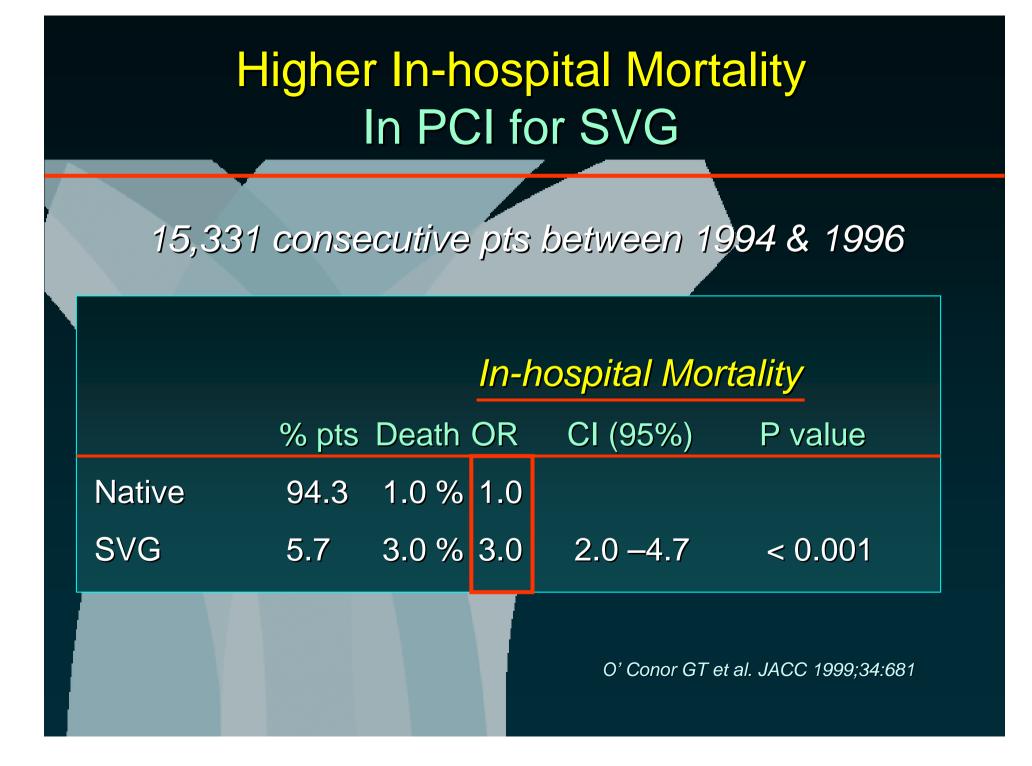


Time since bypass surgery (years)

Motwani JG, Topol EJ. Circulation 1998;97:916-31

SVG Intervention

The Problem : Diffusely Diseased SVGs

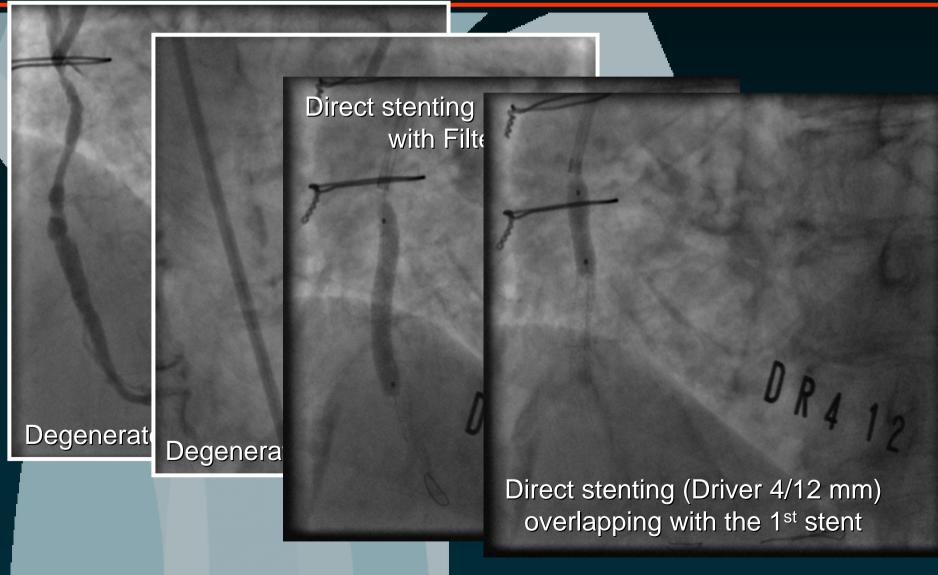


Treatment Options for Diseased SVGs

Re-do CABG Surgery:
Mortality 6 – 8 %
Risk of death 3 – 5 x greater than initial procedure

• *PCI*:

 <u>Historically</u> peri-procedural complications high & long-term outcome suboptimal
 Treat the native vessel



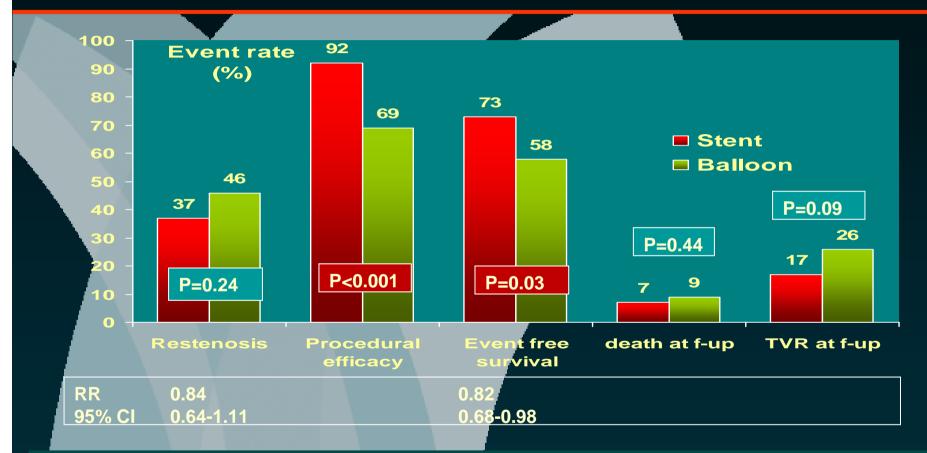
Why is SVG PCI unlike Native Vessel Intervention ??

	Reason	PCI Solution	Result					
	Patient population sicker							
	Friable atheroma / 1 embolic risk	Protection devices	↓ periprocedural MI from 16% to 8%					
	High target vessel failure	Stent	BMS also have a high restenosis rate when placed in SVG (12–37% in most studies).					
J	Is DES the logical solution to the high rate of in-stent restenosis with BMS ?							
	Technical problems with DES placement: geographical miss, plaque prolapse, progression of nontarget lesions could mitigate the clinical benefit.							
	Bryan AJ, Curr Opin Cardiol 1994;9:641–9; Depre C. es. Am J Clin Pathol1008:110:378, 84:)/an Bousekom H. es. J Am Coll Cardiol 1992;21:45, 54							

Depre C, cs Am J Clin Pathol1998;110:378–84;Van Beusekom H, cs. J Am Coll Cardiol 1993;21:45–54.

Case 1: SVG-RCA treated with stenting & Filter EZ wire

Distal Protection Device: When ?

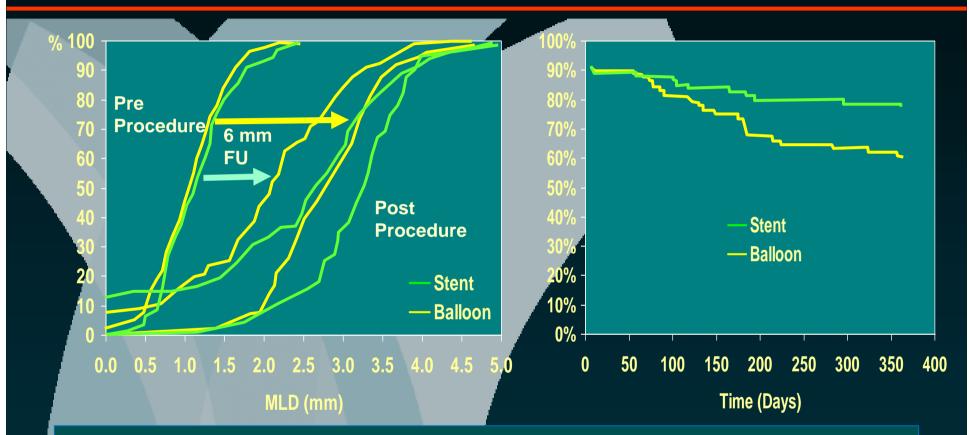

Not required:

- Lesions of proximal or distal anastomosis
- Lesions of distal native vessel beyond distal anastomosis
- In-stent restenosis
- Lesions of the body of the graft:
 - Young graft
 - Low degeneration score
 - Short lesion
 - Single stent
 - No visible thrombus
 - Moderate diameter stenosis

- Required:
 - Old graft
 - Degenerated
 - Long lesion
 - ≥ 2 stents
 - Thrombus
 - High grade stenosis

Fajadet J, 2004

Stenting (BMS) vs Balloon Angioplasty for Venous Coronary Bypass Stenosis (SAVED Trial)



Stenting (BMS) of selected SVG lesion resulted in:

- superior procedural outcomes & a reduction in cardiac event at f-up.
- no significant benefit in the rate of angiographic restenosis (primary end-point)

Savage, et al. N Eng J Med 1997;337:740-747

Balloon Angioplasty & Elective Stent (BMS) Implantation in Venous Bypass Grafts: The Venestent Study

Compared to balloon angioplasty, elective stent implantation (BMS) in de novo SVG lesions is associated with:

- a significantly lower TVR rate
- a significantly higher event-free survival at 1-yr f-up

Hanekamp CEE., et al. Cathet Cardiovasc Intervent: 2003;60:452-457

Case 2: ACS, occluded SVG-RCA, Treated with DES & PercuSurge GuardWire

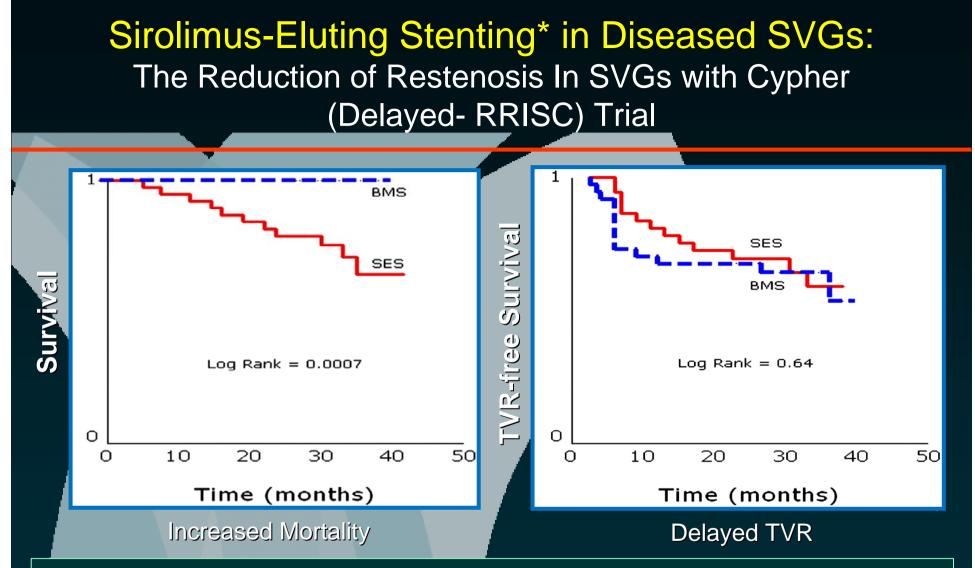
Baseline: occluded SVG-RCA (proximal to 2 previously implanted stents, 2 yrs before) PercuSurge, aspiration, then predilatation followed by stenting

TVR Rates in Retrospective Studies Comparing BMS vs. DES in SVG Lesions

Author (year)	Mean FU (months)	Event type	BMS (n)	BMS Event rate(%)	DES (n)	DES Event rate (%)	Р	Angiographic FU (%)
Ge (2005)	6	TVR	89	23.5	61	4.9	0.003	70%
Lee (2006)	9.1±2.1	TVR	84	37	139	10	0.035	30% DES, 67% BMS
Chu (2006)	12	MACE*	57	18	48	21	0.84	No routine FU angio
Hoffman (2007)	6	TLR*	60	22	60	6	0.04	79% DES, 85% BMS
Wohrle (2007)	12	TVR	26	34.6	13	7.7	0.12	100%
Ellis (2007)	12	TVR	175	11.8	175	6.8	0.14	No routine FU angio
Minutello (2007)	20	TVR	50	36	59	15.3	0.03	No routine FU angio
Applegate (2007)	6	TVR	37	21.6	38	5.3	0.047	100%
Applegate (2007)	32 (26.5- 36)	TVR	37	38	38	34	0.74	100%
Bansal (2008)	33	TVR	72	38	37	35	0.47	No routine FU angio

*No detailed information on TVR was available for these studies.

Modified after Brilakis ES et al. Cathet Cardiovasc Interv 2008;72:815-818


The Strategic Transcatheter Evaluation of New Therapies (STENT) Group

		DES (n=418)	BMS (n=281)	р		
	Lesion length (mm)	18.0	16.2	0.1		
	Vessel diameter (mm)	3.4	3.7	< 0.0001		
	Stent length (mm)	23.7	22.1	0.007		
	Distal location (%)	16	8	0.0007		
X	Distal emboli (%)	0.4	3.3	0.003		
	Acute closures (%)	0.4	2.1	0.04		
	Death (%)	5.0	6.8	0.41		
	MI (%)	4.3	8.2	0.005		
	TVR (%)	5.7	8.5	0.17		
	SAT (%)	0.5	1.4	0.23		
	MACE (%)	12.7	20.3	0.008		
djı	djusted proportional HR for MACE 0.61 (95% CI 0.40, 0.91, p=0.0157) favoring DES.					

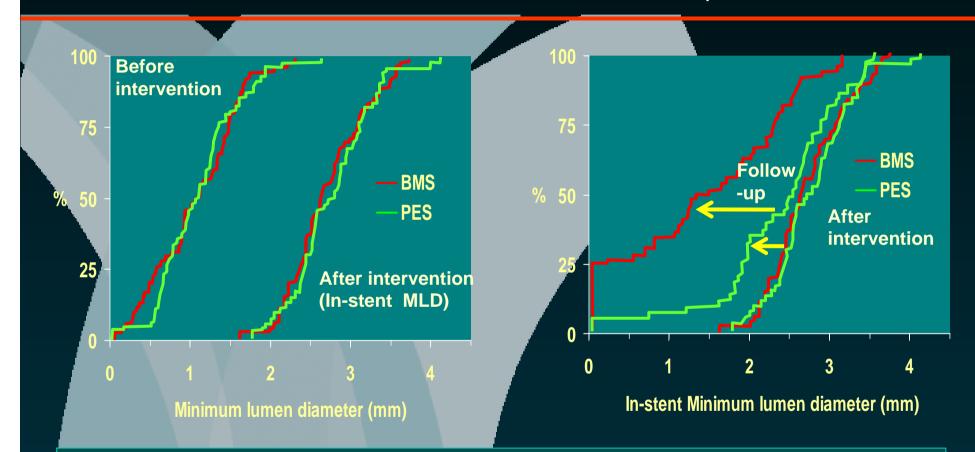
Adjusted proportional HR for MACE 0.0 The individual adjusted HR for 5% CI 0.40, 0.91, p=0.0157) favoring DES 0.55, 95% CI 0.28, 1.10, p=0.0919) 0.33, 1.11, p=0.1031)

No consistent superior benefits for the use of DES in SVGs

Wilson BH, cs. J Am Coll Cardiol 2007;49 (Suppl B):41B

Pts treated with SES showed a significant increase in total mortality; & the benefit of SES in terms of reduced TVR shown at 6 months was lost at long-term f-up

Vermeersch, P. et al. J Am Coll Cardiol 2007;50:261-

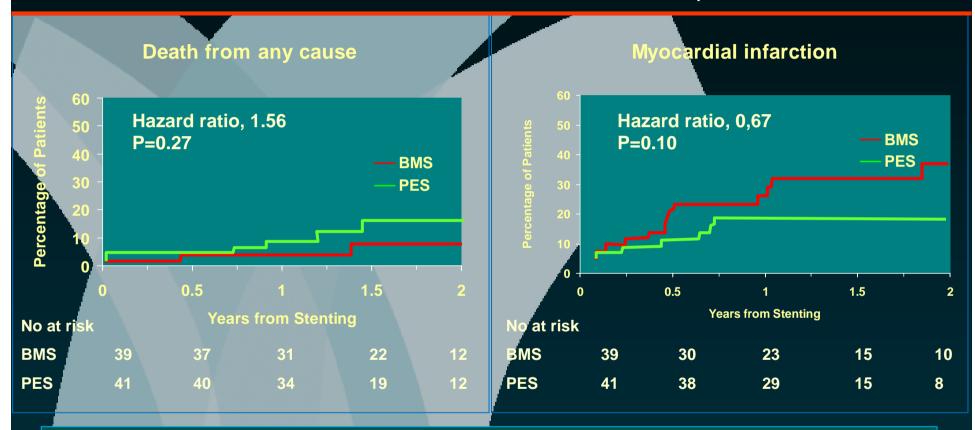

Sirolimus-Eluting Stenting* in Diseased SVGs: The Reduction of Restenosis In SVGs with Cypher (Delayed- RRISC) Trial

After a median follow-up of 32 months:

- 11 deaths occurred in the group receiving SES (29%), but none occurred in the group receiving BMS (p < 0.001).</p>
- 3 deaths were sudden & 1 was caused by stent thrombosis
- Although the findings added to concerns about the long-term safety of DES, the 75-patient study was:
 - Small, not prospectively designed to show a mortality difference.
 - Analysis is post-hoc
 - Some pts may have premature antiplatelet discontinuation

Vermeersch, P. et al. J Am Coll Cardiol 2007;50:261-

The Stenting Of Saphenous Vein Grafts (SOS) Trial: In-Stent MLD Cumulative Frequency Distributions in the BMS & PES Groups

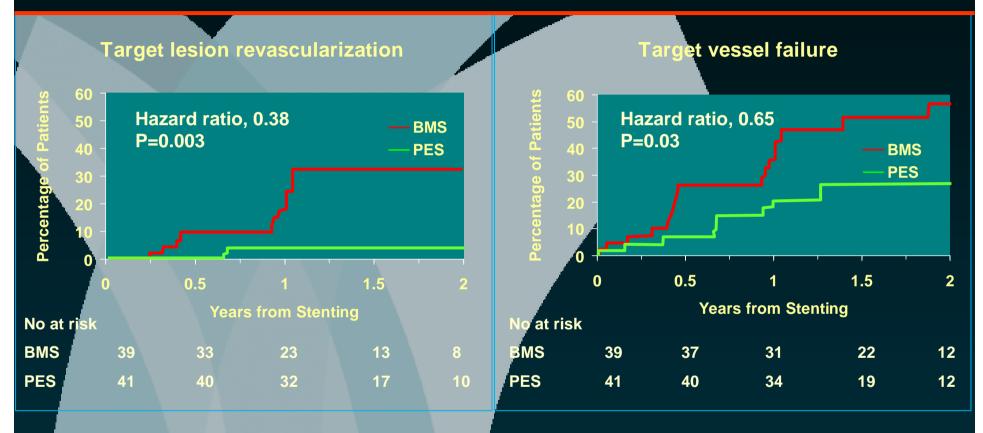


Angiographic restenosis was 51% in the BMS group vs. 9% in the PES group (p < .0001, RR 0.18, 95% CI 0.07-0.48)</p>

* Off –Label Use; N= 80 pts with 112 SVG lesions in 88 SVGs

Brilakis E.S., et al. J am Coll Cardiol 2009;53:919-28

The Stenting Of Saphenous Vein Grafts (SOS) Trial: Death from Any Cause & Myocardial Infarction Distributions in the BMS & PES Groups



 No difference in overall mortality was found between the study groups
 A trend for lower incidence of myocardial infarctions was seen in the Paclitaxel-Eluting Stent (PES) group

Off –Label Use; N= 80 pts with 112 SVG lesions in 88 SVGs

Brilakis E.S., et al. J am Coll Cardiol 2009;53:919-28

The Stenting Of Saphenous Vein Grafts (SOS) Trial: Target Lesion Revascularization & Target Vessel Failure Distributions in the BMS & PES Groups



The incidence of TLR & TVF and composite end point of cardiac death, myocardial infarction & TVR, was significantly lower in the PES group than the BMS group

* Off –Label Use; N= 80 pts with 112 SVG lesions in 88 SVGs

Brilakis E.S., et al. J am Coll Cardiol 2009;53:919-28

SVG failure post-PCI often occurs at Non-Target Sites

Incidence of Early (30-day) Stent Thrombosis in Vein Graft Intervention: AMEthyst Study

786 pts undergoing SVG stenting:
60.2% (n=473) received DES (41.7% Taxus, n=195 & 58.3% Cypher, n=273)
39.8% (n=313) received BMS.

Compared to BMS pts, DES pts had:

lower GP 2b/3a receptor inhibitor use (35.5% vs. 51.1%, p<0.001), smaller ref. vessel diameter (3.02 mm vs. 3.61 mm, p<0.001) & lower plaque volume (94.4 mm3 vs. 131.3 mm3, p<0.001).

Early stent thrombosis:

- for all pts was 0.5%.
- No differences between DES & EMS pts, either prior to (0.4% vs. 0.7%, OR 0.65, p=0.67) or after adjustment (adjusted OR 1.10, p=0.93).
 No differences between Taxus & Cypher, either prior to (0.5% vs. 0.4%, OR 1.07 vs. 0.20) are flowed instructioned (adjusted OD 0.00 vs. 0.50).
 - 1.37, p=0.83) or after adjustment (adjusted OR 0.22, p=0.58).

Srihari S. Naidu, cs. J Am Coll Cardiol 2009;53:A83 (abstr)

Use of DES in SVG Lesions: What does the EBM tell us?

- DES produce better primary angiographic end points (lower carly risk of restenosis) than BMS
- This does not mean that DES will always:
 - produce better clinical outcomes,
 - achieve better angiographic outcomes for all pts with SVG lesions, or
 - even achieve the same angiographic outcomes at different times after stent implantation.
- Whether there is a problem of "catch-up phenomenon" & increased risk of very late stent thrombosis which may drive late events is still unknown.
- Noise due to late target vessel, non-target lesion disease progression

Use of DES in SVG Lesions: What should we do?

"First do no harm!"

- Use embolic protection regardless of BMS or DES
 Target vessel revascularization in SVGs usually due to progression of disease, rather than target lesion failure
 The decision to use DES for SVG lesions remains multifaceted & depends on such factors as graft size, predicted adherence to prolonged dual antiplatelet therapy & the increasingly dominant role of patient preference.
- Be reminded that prolonged dual antiplatelet therapy for both BMS & DES is necessary
- Use DES only in patients who can tolerate prolonged dual antiplatelet therapy

Use of DES in SVG Lesions: What do we need?

Current evidence is based on small, largely retrospective data & only 2 small, prospective trials with only shortterm follow-up

To date, the data was underpowered to detect differences in clinical outcomes

Large, RCTs with longer follow-up are needed