
HORIZONS AMI: Should DES Be Used in Patients with STEMI?

Keith Dawkins MD FRCP FACC FSCAl Associate Chief Medical Officer Senior Vice President Boston Scientific Corporation

Simmit TCT Asia Pacific 2009

April 22-24, 2009

The Convention Center of Sheraton Grande Walkerhill Hotel, Seoul, Korea

Conflicts of Interest

- Employee
 - Boston Scientific Corporation
- Stockholder
 - Boston Scientific Corporation
- Boston Scientific Corporation
 - Co-Sponsored the HORIZONS Trial

Background

- No consensus exists regarding the safety and efficacy of drug-eluting stents in patients with STEMI undergoing primary PCI
- TLR and restenosis rates tend to be lower in STEMI vs. elective PCI patients because of less plaque burden and non viable myocardium
- The safety of implanting DES in ruptured plaques with thrombus has been questioned
- Outcomes from registry studies of DES vs. BMS in STEMI have been conflicting, and no large-scale randomized trials have been performed

HORIZONSAMI

A Prospective, Randomized Comparison of Paclitaxel-eluting TAXUS Stents vs. Bare Metal Stents During Primary Angioplasty in Acute Myocardial Infarction

One Year Results –

PI: Gregg W. Stone MD

HORIZONSAMI

Harmonizing Outcomes with Revascularization and Stents in AMI

3602 pts with STEMI with symptom onset ≤12 hours

Aspirin, thienopyridine R

UFH + GP IIb/IIIa inhibitor (abciximab or eptifibatide)

Bivalirudin monotherapy (± provisional GP IIb/IIIa)

Emergent angiography, followed by triage to...

CABG – Primary PCI – Medical Rx

3000 pts eligible for stent randomization

3:1

TAXUS Express stent

Bare metal EXPRESS stent

Clinical FU at 30 days, 6 months, 1 year, and then yearly through 5 years; angio FU at 13 months

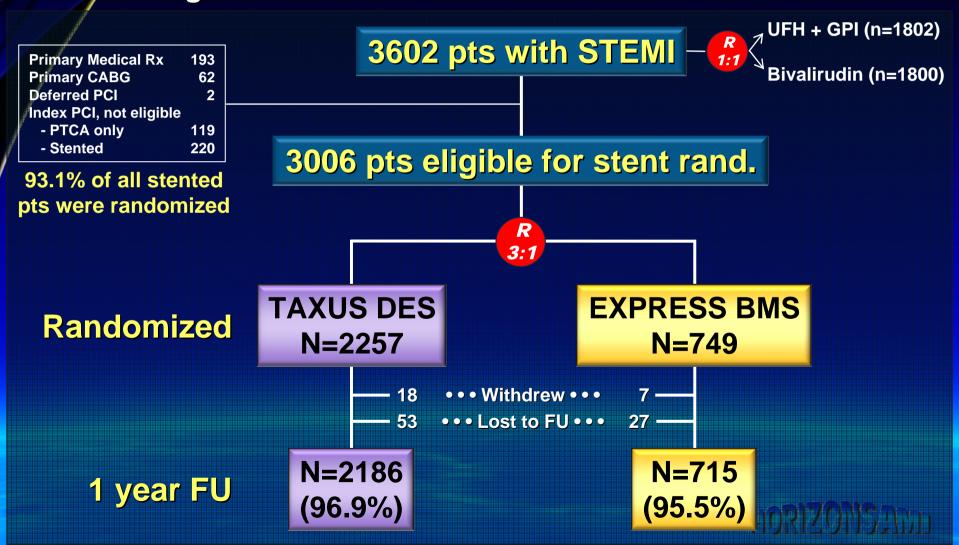
2 Primary Stent Endpoints (at 12 Months)

1) Ischemia-driven TLR*

and

2) Composite Safety MACE =

All cause death, reinfarction, stent thrombosis (ARC definite or probable)**, or stroke


Major Secondary Endpoint (at 13 Months)

Binary angiographic restenosis

* Related to randomized stent lesions (whether study or non study stents were implanted); ** In randomized stent lesions with ≥1 stent implanted (whether study or non study stents)

HORIZONSAMI

Harmonizing Outcomes with Revascularization and Stents in AMI

Baseline Characteristics (i)

	TAXUS (N=2257)	EXPRESS (N=749)
Age (years)	59.9 [52.4, 69.4]	59.3 [51.8, 69.2]
Male	77.0%	76.0%
Diabetes	16.1%	15.2%
Hypertension	51.2%	51.9%
Hyperlipidemia	42.2%	41.1%
Current smoking	46.3%	51.9%
Prior MI	9.1%	10.9%
Prior PCI	9.5%	7.7%
Prior CABG	2.2%	1.9%

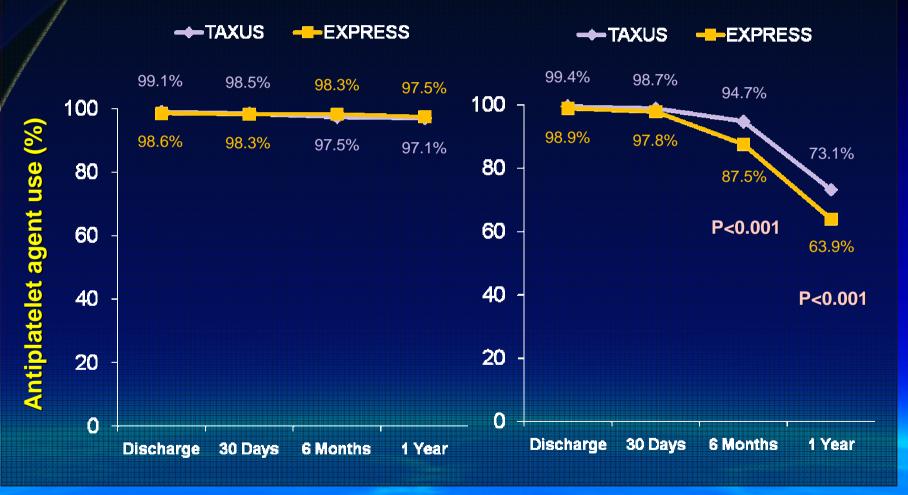
Baseline Characteristics (ii)

	TAXUS (N=2257)	EXPRESS (N=749)
Weight (kg)	80 [71, 90]	80 [71, 90]
Killip class 2-4	8.8%	8.0%
Anterior MI	42.2%	44.7%
LVEF (%), site	50 [44, 59]	50 [43, 58]
Symptoms – PCI, hrs	3.7 [2.7, 5.5]	3.8 [2.7, 5.8]
Femoral a. access	93.6%	92.9%
Venous access	8.5%	8.0%
Closure device	30.1%	28.8%
Aspiration catheter	11.4%	10.7%

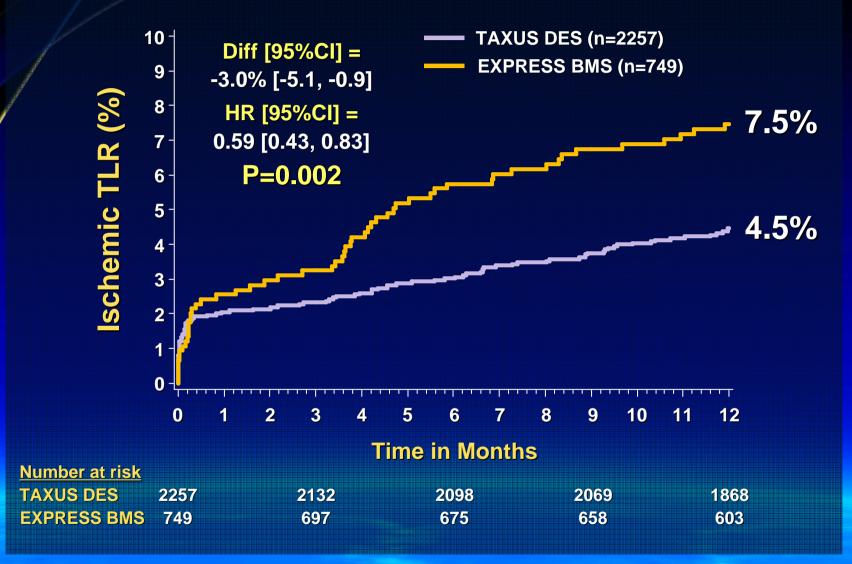
Study Drugs

	TAXUS (N=2257)	EXPRESS (N=749)
Aspirin at home	22.7%	20.5%
Aspirin load pre PCI	97.0%	97.2%
Thienopyridine at home	2.1%	2.5%
Thienopyridine loading dose	98.9%	98.3%
- clopidogrel 300 mg	34.2%	35.5%
- clopidogrel 600 mg	63.3%	61.3%
- clopidogrel other	1.2%	1.3%
- ticlopidine	0.5%	0.3%
UFH pre randomization	65.2%	65.8%
UFH as the procedural antithrombin	49.8%	50.1%
Bivalirudin administered	50.7%	50.9%
GP IIb/IIIa inhibitor administered	52.0%	51.5%

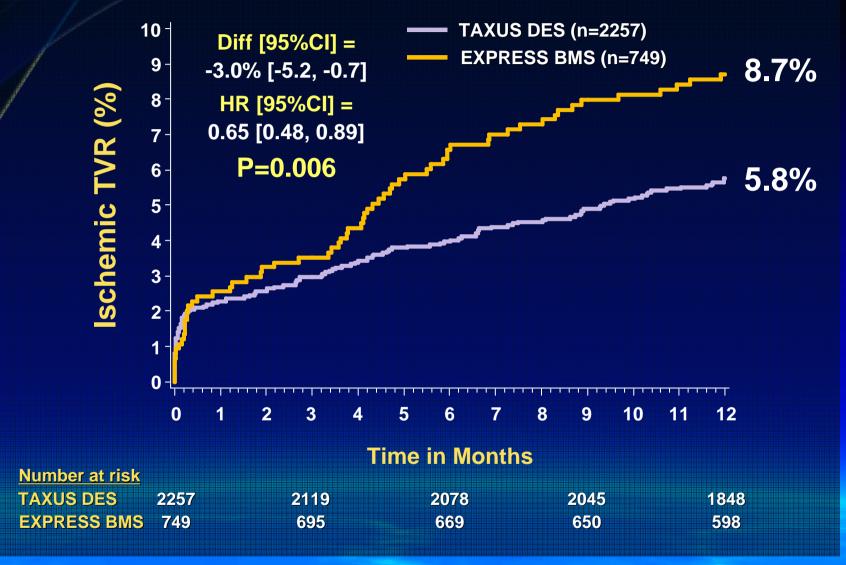
Procedural Data (Site Reported)

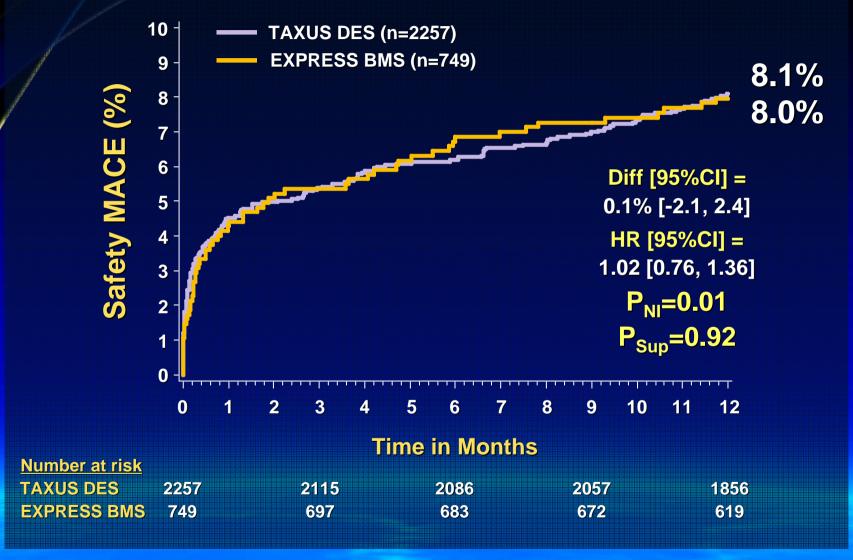

	TAXUS (N=2257, L=2495)	EXPRESS (N=749, L=815)
N lesions treated	1.1 ± 0.4	1.1 ± 0.4
- ≥ 2 lesions treated	11.1%	9.0%
- ≥ 2 vessels treated	4.5%	3.1%
Direct stenting attempted	30.4%	33.7%
Stent target lesion: LAD, LCX, RCA, LM, SVG	40.1%, 14.6%, 45.1%, 0.3%, 0.3%	42.4%, 15.9%, 41.3%, 0.4%, 0.4%
N stents implanted	1.5 ± 0.9 *	1.4 ± 0.7
Total stent length**	30.8 ± 17.8 **	* 27.3 ± 14.9
Max balloon dia. (mm)	3.00 [2.75, 3.50]	3.00 [2.90, 3.50]
Max pressure (atm.)	14.0 [12.0, 16.0]	14.0 [12.0, 16.0]

Quantitative Coronary Angiography

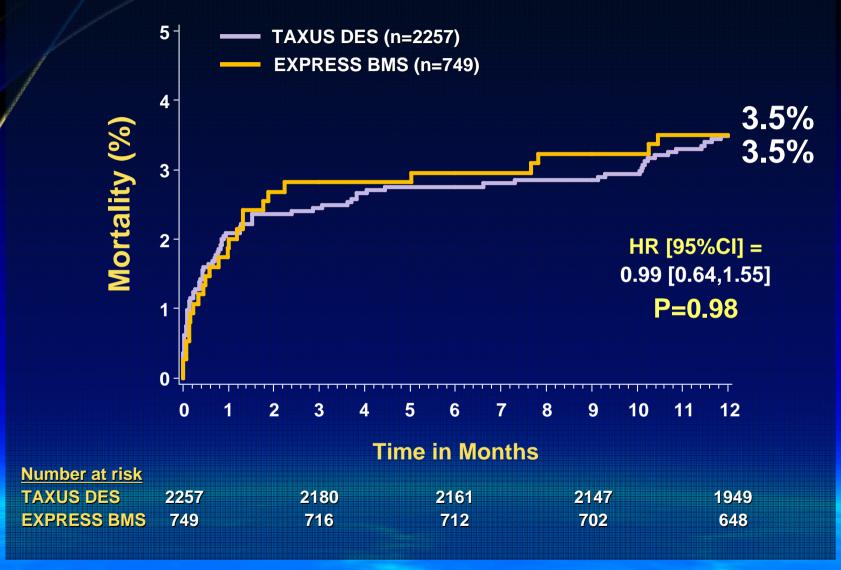

	TAXUS (L=2642, V=2353)	EXPRESS (L=857, V=771)
Pre RVD (mm)	2.89 ± 0.51	2.90 ± 0.50
Pre MLD (mm)	$\textbf{0.35}\pm\textbf{0.45}$	$\textbf{0.35} \pm \textbf{0.45}$
Pre %DS	87.6 ± 15.4	87.4 ± 15.4
Pre lesion length (mm)	17.5 ± 10.1 †	16.2 ± 8.8
Pre TIMI 0/1, 2, 3	60.6%, 13.6%, 25.7%	57.4%, 15.2%, 27.4%
Post RVD (mm)	2.93 ± 0.51	2.95 ± 0.50
Post MLD (mm)*	2.36 ± 0.55	2.37 ± 0.52
Post %DS*	19.9 ± 11.6	19.5 ± 11.1
Acute gain (mm)**	2.04 ± 0.64	2.05 ± 0.62
Post TIMI 0/1, 2, 3	1.7%, 10.7%, 87.6%	0.9%, 9.3%, 89.8%

Aspirin and Thienopyridine Use

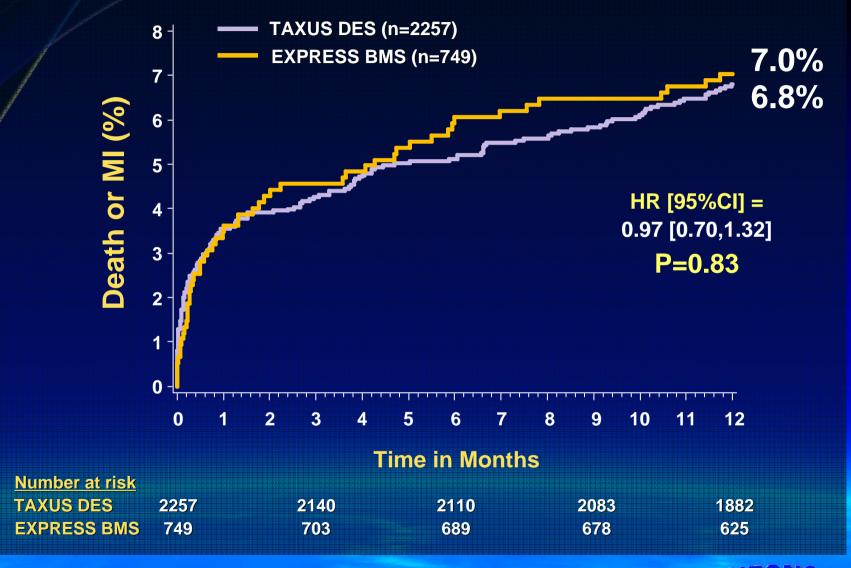

Regular* aspirin use (%) Regular* thieno. use (%)


Primary Efficacy Endpoint: Ischemic TLR

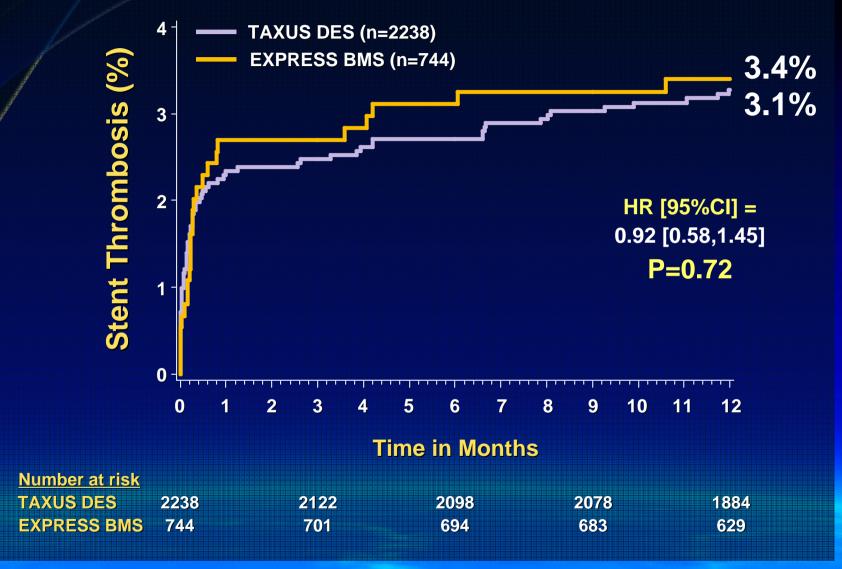
Secondary Efficacy Endpoint: Ischemic TVR



Primary Safety Endpoint: Safety MACE*



^{*} Safety MACE = death, reinfarction, stroke, or stent thrombosis


One-Year All-Cause Mortality

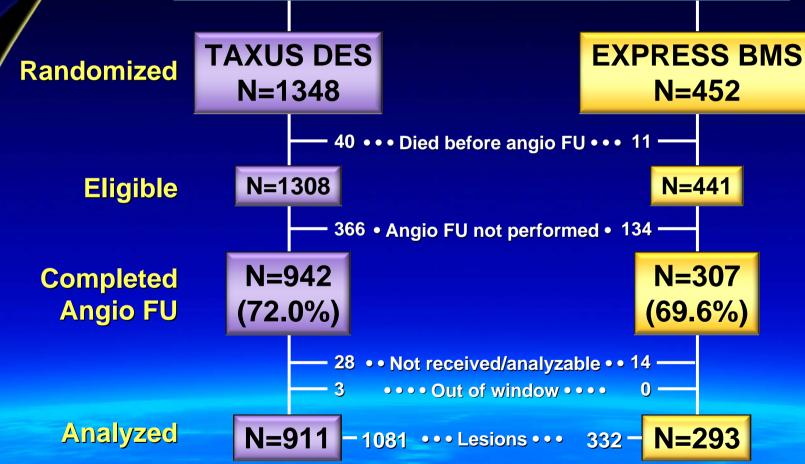
One-Year Death or Reinfarction

Stent Thrombosis (ARC Definite or Probable)

Stent Thrombosis Rates*

	TAXUS (N=2238)	EXPRESS (N=744)	Hazard ratio [95%CI]	P Value
Stent thrombosis, ≤30 days	2.3%	2.7%	0.87 [0.52,1.46]	0.60
- ARC definite	1.9%	2.3%	0.83 [0.47,1.45]	0.51
- ARC probable	0.5%	0.4%	1.11 [0.31,4.05]	0.87
Stent thrombosis, >30d – 1y	1.0%	0.7%	1.39 [0.52,3.68]	0.51
- ARC definite	0.9%	0.7%	1.25 [0.47,3.35]	0.65
- ARC probable	0.1%	0%	<u> - </u>	0.42
Stent thrombosis, ≤1 year	3.1%	3.4%	0.92 [0.58,1.45]	0.72
- ARC definite	2.6%	3.0%	0.86 [0.53,1.41]	0.55
- ARC probable	0.5%	0.4%	1.33 [0.38,4.73]	0.65

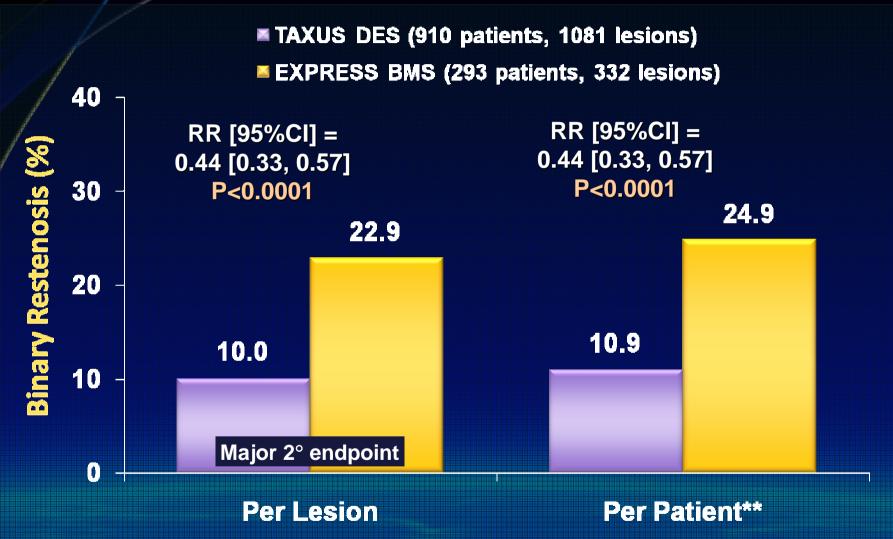
HORIZONSZIMI


One Year Composite Safety Endpoints*

	TAXUS (N=2257)	EXPRESS (N=749)	HR [95%CI]	P Value
Safety MACE**	8.1%	8.0%	1.02 [0.76,1.36]	0.92
Death, all-cause	3.5%	3.5%	0.99 [0.64,1.55]	0.98
- Cardiac	2.4%	2.7%	0.90 [0.54,1.50]	0.68
- Non cardiac	1.1%	0.8%	1.32 [0.54,3.22]	0.55
Reinfarction	3.7%	4.5%	0.81 [0.54,1.21]	0.31
- Q-wave	2.0%	1.9%	1.07 [0.59,1.94]	0.83
- Non Q-wave	1.8%	2.7%	0.68 [0.39,1.17]	0.16
Stent thrombosis†	3.1%	3.4%	0.92 [0.58,1.45]	0.72
- ARC definite	2.6%	3.0%	0.86 [0.53,1.41]	0.55
- ARC probable	0.5%	0.4%	1.33 [0.38,4.73]	0.65
Stroke	1.0%	0.7%	1.52 [0.58,4.00]	0.39

Angiographic Follow-up

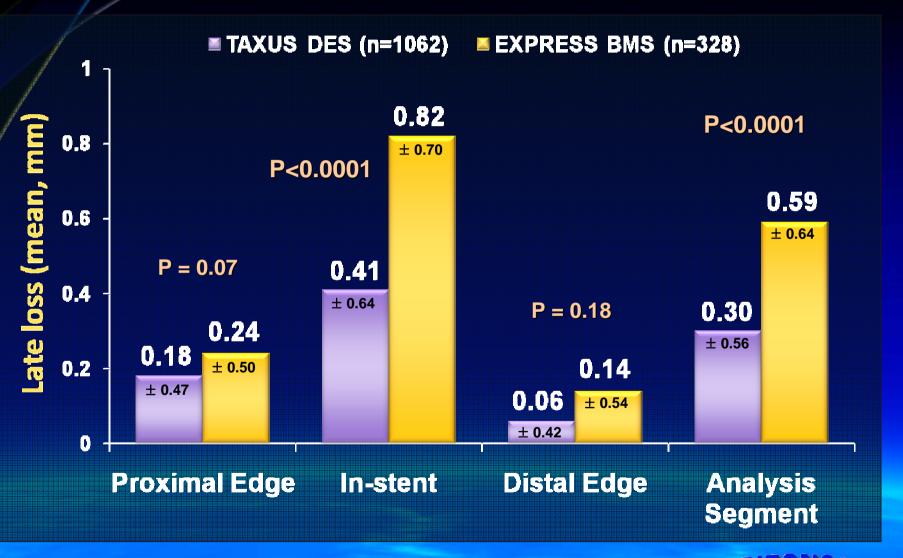
1800 consecutive eligible pts assigned to 13 month angiographic FU*

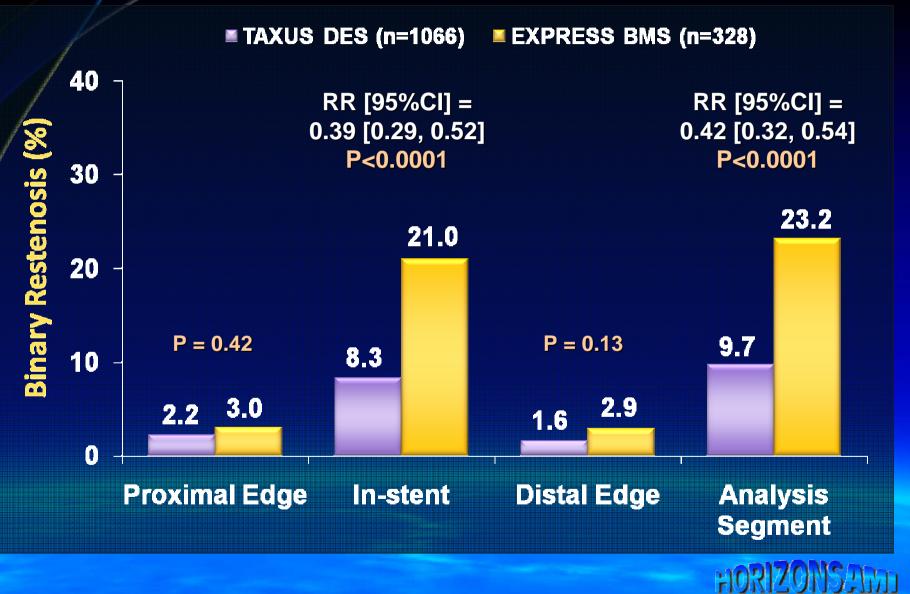


^{*} Randomized in stent arm; stent procedure successful (DS <10%, TIMI-3 flow, ≤NHLBI type A peri-stent dissection); no stent thrombosis or CABG w/i 30

Follow-up QCA

	TAXUS (L=1081, V=964)	EXPRESS (L=332, V=302)	P value
TIMI flow			
- 0/1	2.8%	3.6%	0.45
- 2	7.0%	5.0%	0.22
- 3	90.2%	91.4%	0.55
FU RVD (mm)	2.91 ± 0.49	2.90 ± 0.48	0.97
FU MLD in-stent (mm)	2.36 ± 0.75	1.98 ± 0.82	<0.0001
FU MLD in-segment (mm)	2.08 ± 0.69	1.84 ± 0.76	<0.0001
FU %DS in-stent	18.8 ± 22.9	32.6 ± 24.9	<0.0001
FU %DS in-segment	28.8 ± 19.6	37.4 ± 22.0	<0.0001
Aneurysm	0.5%	0.9%	0.40
Ulcerated	0.5%	0.6%	0.67
Ectasia	0.7%	0.9%	0.73


Binary Analysis Segment Restenosis at 13 Months Patient and Lesion Level Analysis*


^{*} ITT: Includes all stent randomized lesions, whether or not a stent was implanted, and whether or not non study stents were placed ** Any lesion with restenosis ⇒ per pt restenosis

Angiographic Late Loss at 13 Month Lesions with Stents Implanted

Binary Angiographic Restenosis at 13 Months Lesions with Stents Implanted

Limitations

- Open label design
 - Potential bias was mitigated by high protocol procedure compliance and use of blinded clinical event adjudication committees and core laboratories
- Underpowered for stent thrombosis and death
 - The virtually identical rates of MACE in the TAXUS Express and Bare Metal Express groups makes it unlikely that major safety differences exist favoring either stent type at 1-year

Conclusions

- In this large-scale, prospective, randomized trial of pts with STEMI undergoing primary stenting, the implantation of paclitaxel-eluting TAXUS Express stents compared to Bare Metal Express stents resulted in:
 - A significant 41% reduction in the 1-year primary efficacy endpoint of ischemia-driven TLR, and a significant 56% reduction in the 13 month major secondary efficacy endpoint of binary restenosis
 - Non inferior rates of the primary composite safety endpoint of all cause death, reinfarction, stent thrombosis or stroke at 1-year

Conclusions

 The long-term safety and efficacy profile of paclitaxel-eluting TAXUS Express stents compared to Bare Metal Express stents in STEMI will be determined by the ongoing 5 year follow-up of patients randomized in the HORIZONS-AMI trial