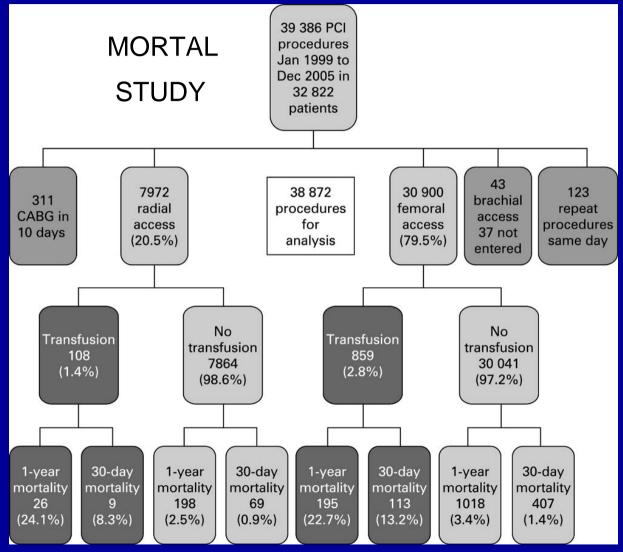
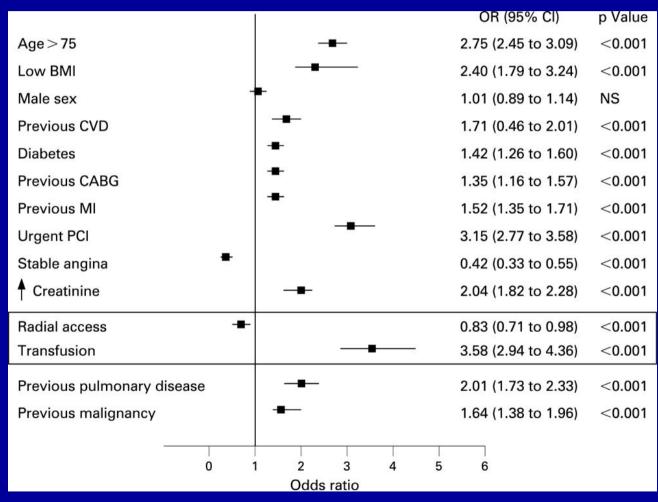
Summit TCT Asia Pacific 2009

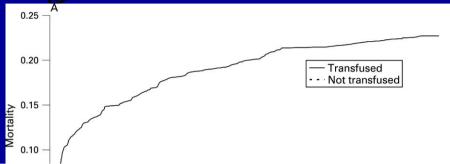
April 22-24, 2009

The Convention Center of Sheraton Grande Walkerhill Hotel, Seoul, Korea

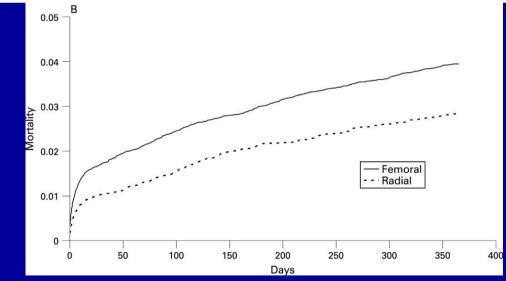

Radial Artery Access Improving Outcomes and Decreasing Costs

Howard A. Cohen, MD, FACC, FSCAI Director, Division of Cardiac Intervention Co-Director, Cardiac Catheterization Laboratories Lenox Hill Heart & Vascular Institute




DISCLOSURE

Nothing to disclose

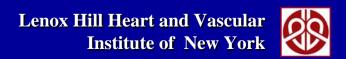

Predictors of 1-Year Mortality in the Mortal Study

Bleeding requiring is bad and is associated with increased mortality

Trans-radial access decreases bleeding and is associated with Decreased mortality

Journal of the American College of Cardiology © 2004 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 44, No. 9, 2004 ISSN 0735-1097/04/\$30.00 doi:10.1016/j.jacc.2004.05.085

Cost-Effectiveness and Cardiac Interventions


Economic Evaluation of Bivalirudin With Provisional Glycoprotein IIb/IIIa Inhibition Versus Heparin With Routine Glycoprotein IIb/IIIa Inhibition for Percutaneous Coronary Intervention

Results From the REPLACE-2 Trial

David J. Cohen, MD, MSc,*† A. Michael Lincoff, MD,‡ Tara A. Lavelle, BS,† Huei-Ling Chen, PHD,† Ameet Bakhai, MD,*† Ronna H. Berezin, MPH,† Daniel Jackman, MD,§ Ian J. Sarembock, MB, CHB,|| Eric J. Topol, MD,‡ on behalf of the REPLACE-2 Investigators

Boston and Brookline, Massachusetts; Tyler, Texas; Charlottesville, Virginia; and Cleveland, Ohio

"...hospital savings were due primarily to a reduction in major bleeding."

Impact of Major Bleeding on 30-Day Mortality and Clinical Outcomes in Patients With Acute Coronary Syndromes

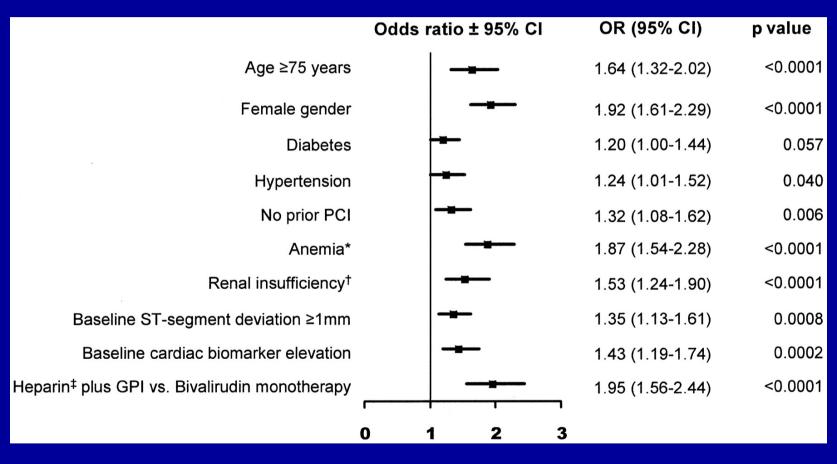
An Analysis From the ACUITY Trial

Steven V. Manoukian, MD, FACC,* Frederick Feit, MD, FACC,† Roxana Mehran, MD, FACC,‡

Michele D. Voeltz, MD,* Ramin Ebrahimi, MD, FACC, Martial Hamon, MD,

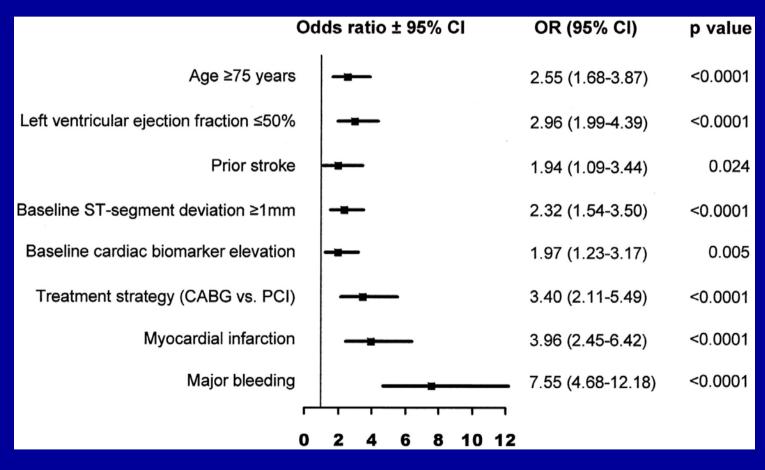
George D. Dangas, MD, PHD, FACC, A. Michael Lincoff, MD, FACC,

Harvey D. White, DSc, FACC# Jeffrey W. Moses, MD, FACC,‡ Spencer B. King III, MD, MACC**


E. Magnus Ohman, MD, FACC, †† Gregg W. Stone, MD, FACC ‡

Atlanta, Georgia; Los Angeles, California; New York, New York; Caen, France; Cleveland, Ohio; Auckland, New Zealand; and Durham, North Carolina

J Am Coll Cardiol 2007;49:1362-8



INDEPENDENT PREDICTORS OF MAJOR BLEEDING

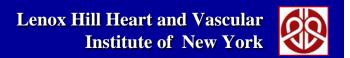
INDEPENDENT PREDICTORS OF MORTALITY

MORTALITY AND MAJOR BLEEDING

Types of Major Bleeding by Treatment Group

Table 2

Types of Major Bleeding by Treatment Group


	Heparin (Unfractionated or Enoxaparin) Plus a Glycoprotein IIb/IIIa Inhibitor (n = 4,603)	Bivalirudin Plus a Glycoprotein Ilb/Illa Inhibitor (n = 4,604)	Risk Ratio [95% Confidence Interval]	p ₁ Value*	Bivalirudin Monotherapy (n = 4,612)	Risk Ratio [95% Confidence Interval]	p ₂ Value†
Major bleeding (not CABG-related) (primary end point)	262 (5.7%)	243 (5.3%)	0.93 [0.78 -1.1 0]	0.38	139 (3.0%)	0.53 [0.43-0.65]	<0.0001
Intracranial	3 (0.07%)	3 (0.07%)		1.00§	3 (0.07%)		1.00§
Retroperitoneal	24 (0.5%)	26 (0.6%)		0.78	7 (0.2%)		< 0.01
Access site bleeding	117 (2.5%)	117 (2.5%)		1.00	38 (0.8%)		< 0.0001
Requiring intervention or surgery	24 (0.5%)	28 (0.6%)		0.58	14 (0.3%)		0.10
Hematoma ≥5 cm	102 (2.2%)	101 (2.2%)		0.94	32 (0.7%)		< 0.0001
Hemoglobin decrease ≥3 g/dl with overt source	102 (2.2%)	83 (1.8%)		0.16	45 (1.0%)		<0.0001
Hemoglobin decrease ≥4 g/dl without overt source	39 (0.8%)	33 (0.7%)		0.48	33 (0.7%)		0.47
Blood transfusion	125 (2.7%)	119 (2.6%)		0.70	75 (1.6%)		0.0003
Reoperation for bleeding	2 (0.04%)	5 (0.1%)		0.459	4 (0.1%)		0.69§
Thrombocytopenia (acquired)‡	511 (11.1%)	497 (10.8%)		0.64	457 (9.9%)		0.06

Arterial Access-Site-Related Outcomes of Patients Undergoing Invasive Coronary Procedures for ACS – PRESTO-ACS Vascular Substudy

- Presto-ACS Italian MC observational study to compare outcomes of high risk NSTE ACS treated with routine invasive or selective invasive strategy
- Site related outcomes of patients who underwent invasive coronary procedure comparing TR and FA access
- 1305 patients with 90% (863 FA and 307 TR) follow-up
- 1° EP in hospital and 1 year MI + death (any cause) and 2° EP in-hospital bleeding and net clinical EP (1° + bleeding)

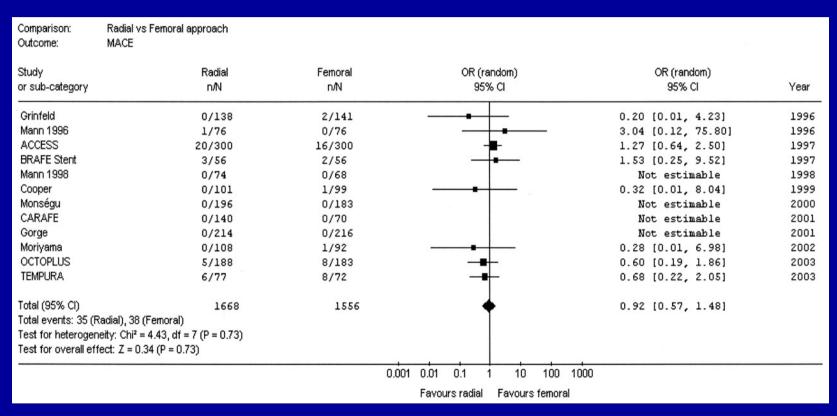
Sciahbasi et al. Am J Cardiol 209;103:796-800

PRESTO ACS Vascular Substudy - Death or MI 1yr Multivariate analysis

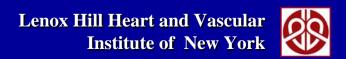
Variable	Odds Ratio	95% CI	p Value
Bleeding	11.5	3.8-35	<0.0001
GFR <60 Cc/min	7.7	2.6-23	<0.0001
EF<35%	4.5	3.8-35	<0.0001

PRESTO ACS Vascular Substudy - Death/MI/Bleeding at 1yr Multivariate analysis

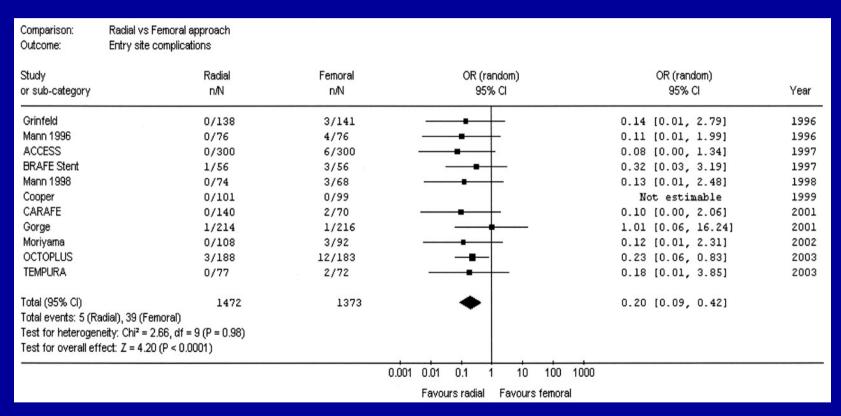
Variable	Odds Ratio	95% CI	p Value
TRA	0.6	0.3-1.0	<0.05
GFR<60 cc/min	2.0	1.2-3.3	0.01
EF<35%	2.7	1.5-4.8	0.001
DM	1.7	1.12-2.7	0.01


PRESTO ACS Vascular Substudy-Clinical, Procedural and Pharmacolgic characteristics

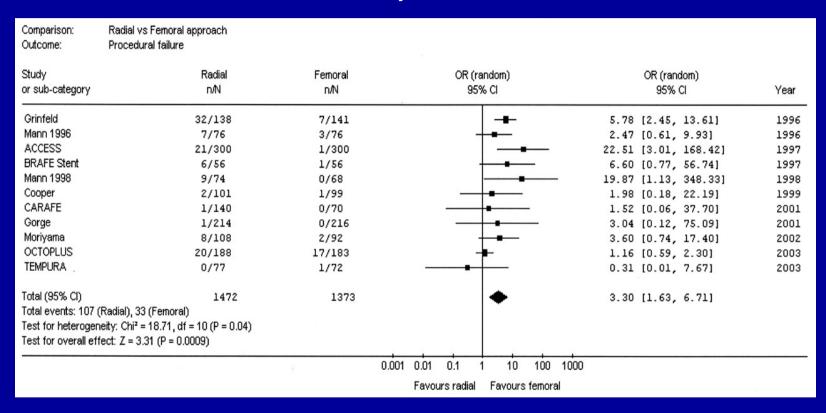
Variable	TRA	FA	p Value
Age	65±11	68±11	0.0005
Men	73%	66%	0.02
Thienopyr	90%	83%	0.008
GPIIbIIIa RA's	52%	34%	<0.0001


Radial vs Femoral Access for Coronary Angiography or PCI and the Impact on Major Bleeding and Ischemic Events: A Systematic Review and Meta-analysis of Randomized Trials

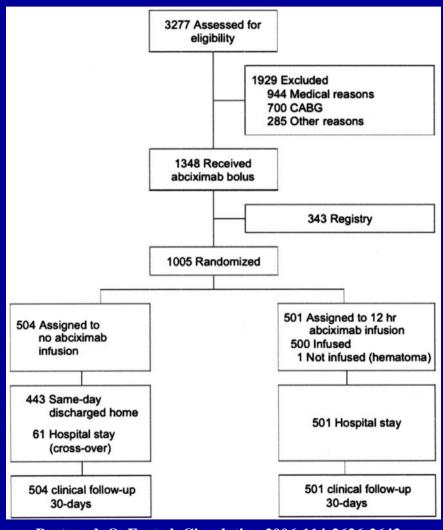
Variable	TRA	TFA	Odds Ratio/CI	p Value
Major	0.05%	2.3%	0.27	p<0.001
Bleeding			0.16,0.45	
D, MI,	2.5%	3.8%	0.71	p=0.58
Stroke			0.49, 1.01	
Death	1.2%	1.8%	0.74	p=0.29
			0.42,1.30	
LOS	↓0.4 days			p=0.0001
			0.2-0.5	


Overall risk of major adverse cardiovascular events (MACE)

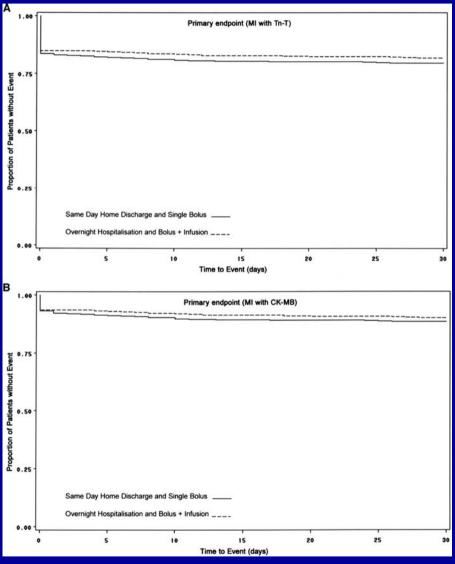
Agostoni, P. et al. J Am Coll Cardiol 2004;44:349-356


Overall risk of entry site complications

Agostoni, P. et al. J Am Coll Cardiol 2004;44:349-356


Overall risk of procedural failure

Agostoni, P. et al. J Am Coll Cardiol 2004;44:349-356


A Randomized Study Comparing Same-Day Home D/C and Abciximab Only to Overnight Hospitalization and Abciximab Bolus and Infusion After Transradial Coronary Stent Implantation

EFS Curves for Primary EP's with Tn-T and CK-MB at 30 Days

Bertrand, O. F. et al. Circulation 2006;114:2636-2643

Costs

- TRA decreases bleeding and thereby decreases costs
- Closure device \$0-25 vs \$200/case
- TRA may allows for safe outpatient PCI (stenting) and thereby decrease costs

Outcomes

- TRA definitely decreases bleeding
- Observational studies and Meta-analysis suggest that TRA decreases short and longterm outcomes
- RCT's are needed to prove that TR vs FA access decreases short and long-term outcomes