Tailored Approach with DES for Long Coronary Lesions

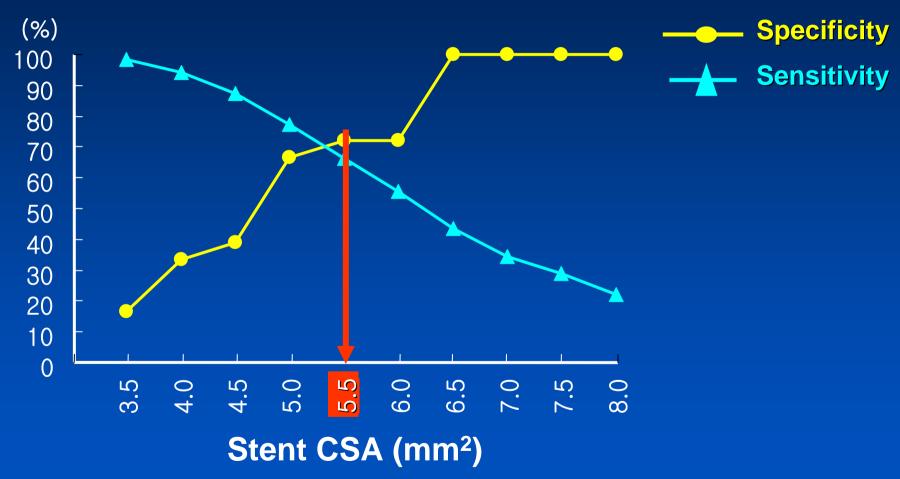
Seung-Jung Park, MD, PhD,


Professor of Internal Medicine Asan Medical Center, *Seoul, Korea*

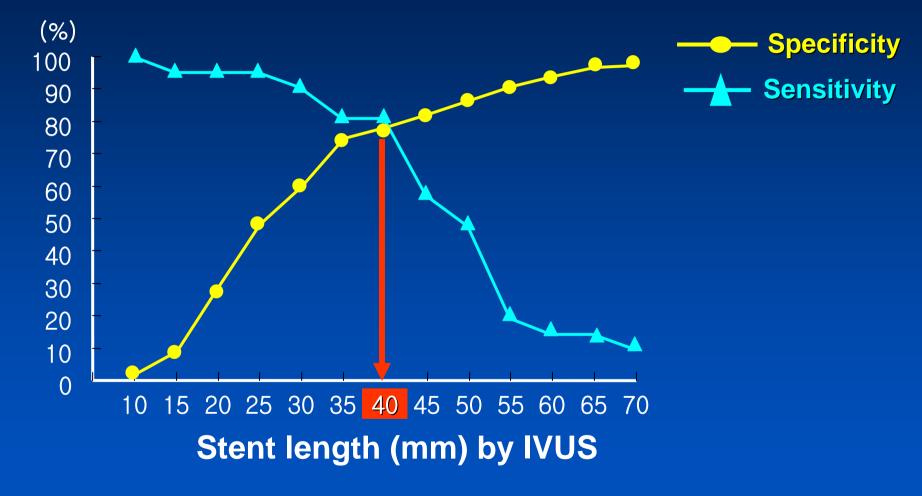
Long lesions > 28 mm, <50 mm
Very long lesions >50mm What about long-term outcome ? Stent overlapping, stent fracture are really problems ? Which stent would be better ?
Impact of Cilostazol
Very long lesions with extended to the small distal vessel

Long lesions > 28 mm, <50 mm We have clear cut-off value of IVUS parameters

Diffuse lesion, <28 mm



Single long DES Cypher 3.5mm, 33 mm in length



Sensitivity and specificity curves to identify optimal cut-off values of stent CSA

Hong MK, Eur Heart J, 2006:27:1305

Sensitivity and specificity curves to identify optimal cut-off values of total stent length

Hong MK, Eur Heart J, 2006:27:1305

Restenosis Rate according to Stented Length and Stent CSA by IVUS SES Registry in Asan Medical Center

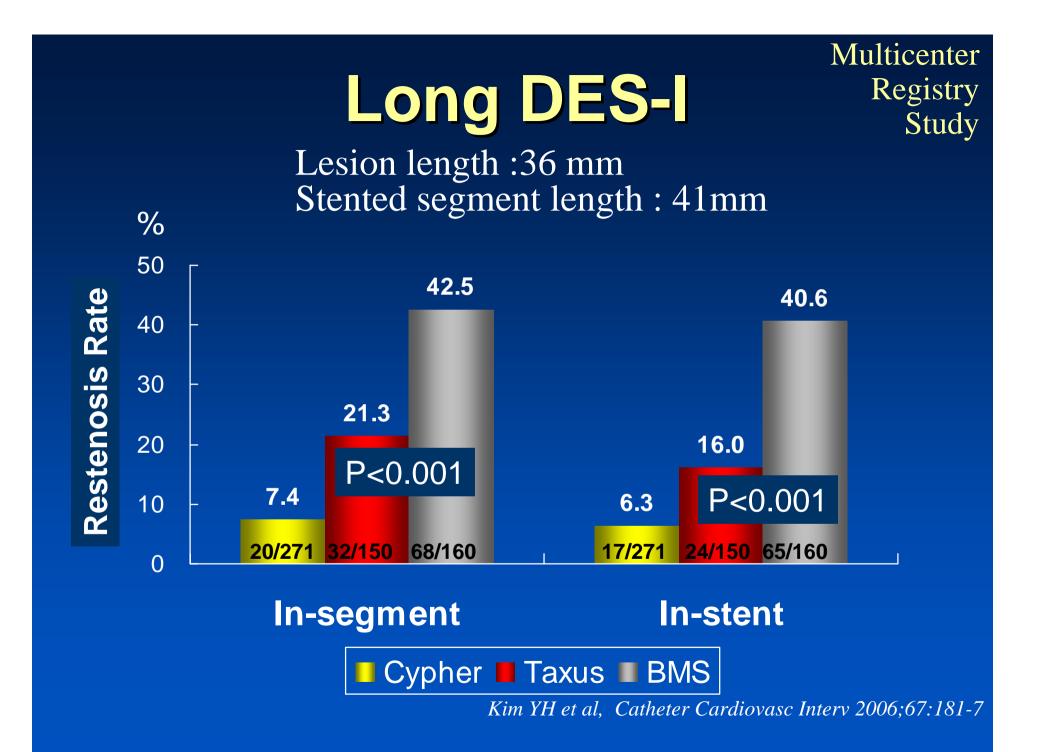
Stent length (mm)	l	Stent area (mm ²)	Resten	osis rate	P value
≤ 40	and	≥ 5.5	1/284	(0.4%)	
≤ 40	or	< 5.5	3/127	(2.4%)	
					<i>P</i> <0.001
>40	or	≥ 5.5	6/ 70	(8.6%)	
>40		< 5.5	11/62 ((17.7%)	

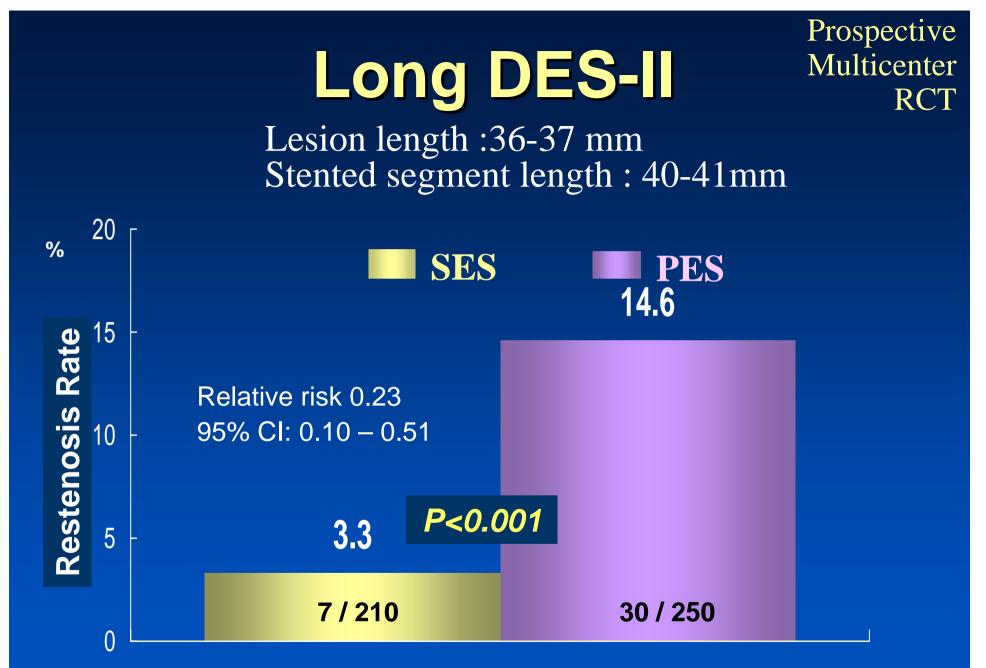
Hong MK, Eur Heart J, 2006:27:1305

Stented Length to Predict Restenosis by **QCA**

Predictor	Restenosis	No Restenosis	
	(n=20)	(n=257)	
Stented length \geq 46 mm	14 (13.5%)	90 (86.5%)	
Stented length < 46 mm	6 (3.5%)	167 (96.5%)	

Sensitivity = 70%, Specificity = 65%, Positive predictive value = 14%, Negative predictive value = 97%


Unpublished data from LONG-DES I study


Long lesions > 28 mm, <50 mm
 We have clear cut-off value of IVUS parameters
 (Stent CSA 5.5mm² and/or Stented length <50 mm)

- 33 mm
- 23 x 23 mm
- 28 x 18 mm
- 33 x 18 mm

Would be OK (< 10% Restenosis)

Which stent would be better ?

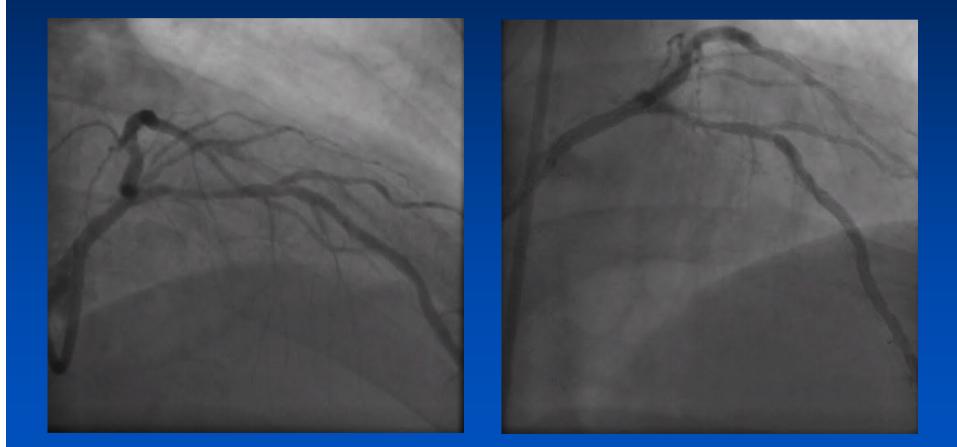
Kim YH, Long DES-II investigator, Circulation, 2006;114:2148-2153

Angiographic Restenosis : Cypher vs Taxus

	Cypher	Taxus		P-value	
Overall	7.4	24.3		<0.0001	
Male	6.6	21.3		<0.0001	
Female	10.5	21.9		0.119	
Diabetes	9.9	23.5		0.033	
No Diabetes	6.3	20.2		<0.0001	
LAD	5.7	20.5		0.001	
Non-LAD	9.8	22.1		0.020	
Small Vessel (<u><</u> 2.75)	9.2	27.0		0.001	
Large Vessel	5.7	17.2		0.005	
Stent length>45mm	13.9	25.8		0.056	
Stent length <u><</u> 45mm	3.5	18.2		<0.0001	
Multiple stent	12.1	22.5		0.041	
Single	2.3	20.0		<0.0001	
"Cypher Better " 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.8 0.7					

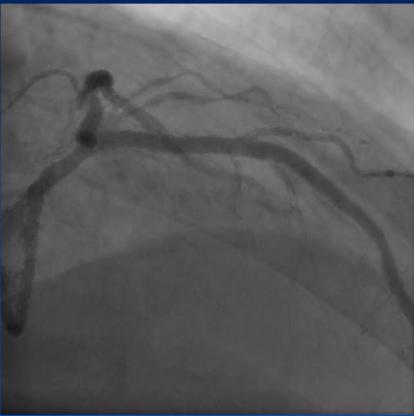
ZEST

All Comer requiring PCI with DES for coronary lesions in 20 Centers of Korea (Total 2,640 patients)


Clinical follow-up at 12 months Angiographic follow-up at 8 months

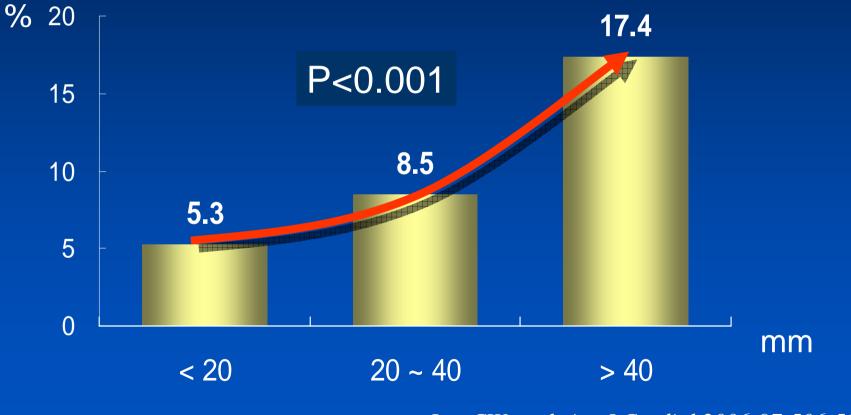
*Primary End-point: Target Vessel Failure (TVF) at 12 months


Completed enrollment at Feb. 2008


 Long lesions > 25 mm, <50 mm We have clear cut-off value of IVUS parameters
 Very long lesions >50mm What about long-term outcome ? Stent overlapping, stent fracture are really problems ?

Very long lesion > 50 mm

Very long lesion Two DES with overlapping



2 x Cyphers 3.5mm, 33 mm

What about Long-term Outcomes ? (Full Metal Jacket)

Stented Segment is still Independent Predictor of Restenosis

Lee CW et al. Am J Cardiol 2006;97:506-511

Clinical Outcomes at 1 year of Very Long Lesions in RESEARCH Stented length of **79mm** (64-168)

	All	SES	PES	p value
	(n=122)	(n=81)	(n=41)	
Death (%)	4.1	2.5	7.3	0.2
MI (%)	10.0	11.2	7.4	0.53
TVR (%)	7.5	7.5	7.6	0.96
MACE (%)	18.0	18.5	17.1	0.87

Aoki J et al, Am Heart J 2005;150:994-9

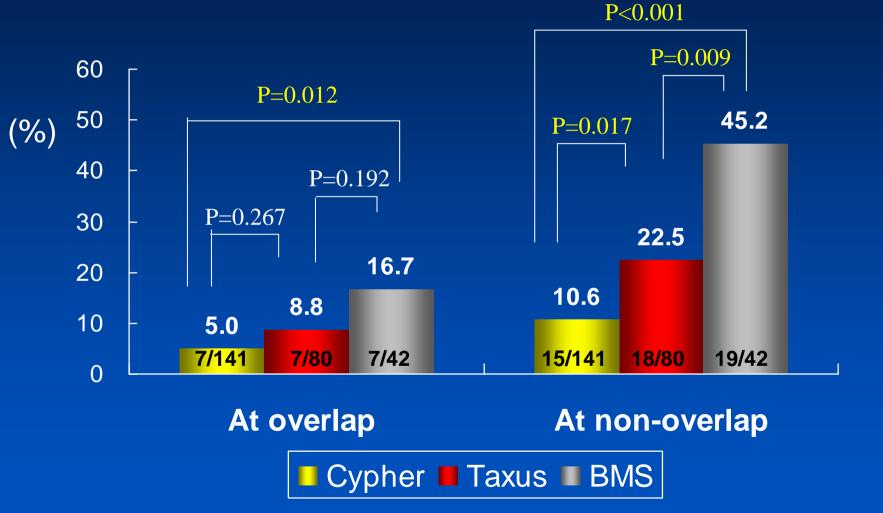
Clinical Outcomes at 1 year for Long LAD Lesions

Stented length of 64+18 mm (27 PES, 39 SES)

	In-hospital	Follow-up
	(n=66)	(n=66)
Death	0	0
Q wave	0	0
Non-Q wave	11 (16.6%)	1 (1.5%)
Thrombosis	1 (1.5%)	0
Restenosis	0	13 (19.6%)
TVR	0	10 (15%)
CABG	0	1 (1.5%)

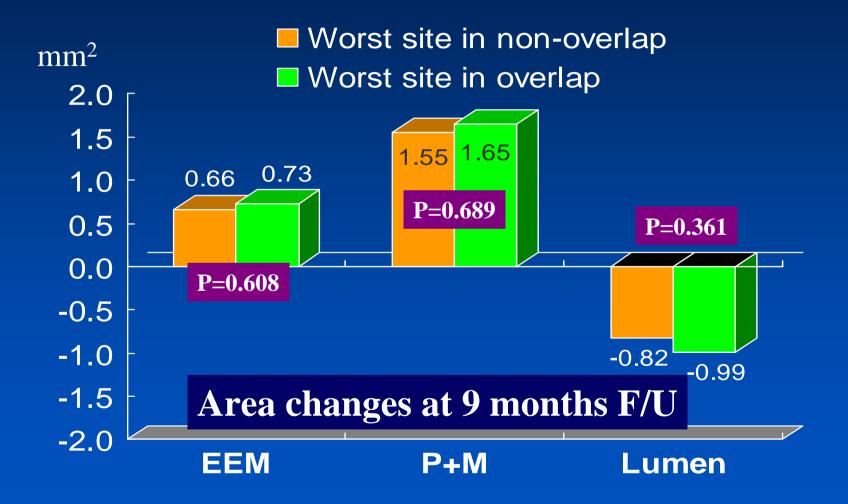
Tsagalou E et al, J Am Coll Cardiol 2005;45:1570-3

Milan


Clinical Outcomes at 1 year of Very Long Lesions in AMC Stented length of 72+14 mm (266 SES, 86 PES)

	In-hospital (n=347)	Follow-up (n=346)
Death	1 (0.3%)	9 (2.6%)
Q wave	2 (0.6%)	3 (0.9%)
Non-Q wave	68 (19.6%)	68 (20%)
Thrombosis	2 (0.6%)	3 (0.9%)
Restenosis	0	41 (13.7%)
SES vs PES	0	11% vs 22%
TVR	2 (0.6%)	13 (3.8%)

Lee CW et al, Am J Cardiol 2006; 98 :918-922


Stent Overlapping (Full Metal Jacket)

Impact of Stent Overlapping In-segment Restenosis Rate in Multiple Stenting

Kim YH et al, Catheter Cardiovasc Interv 2006;67:181-7

Stent-overlap did not show any difference in IVUS subgroup analysis : Long-DES I study

Stent Fracture (Full Metal Jacket)

Stent Fracture SIRUS Angiographic Analysis

305 patients analyzed with 497 follow-up angiograms

- 4 fractures identified (1.3%),
- 3x Fracture Type 1 (0.98%)
- 1x Fracture Type 2 (0.33%)
- All fractures occurred with multiple stents near the site of overlap, all vessels calcified including one chronic total occlusion.
- 1 ISR at that site with TLR (Type 1 Fracture tissue growth)

Popma JJ TCT 2007

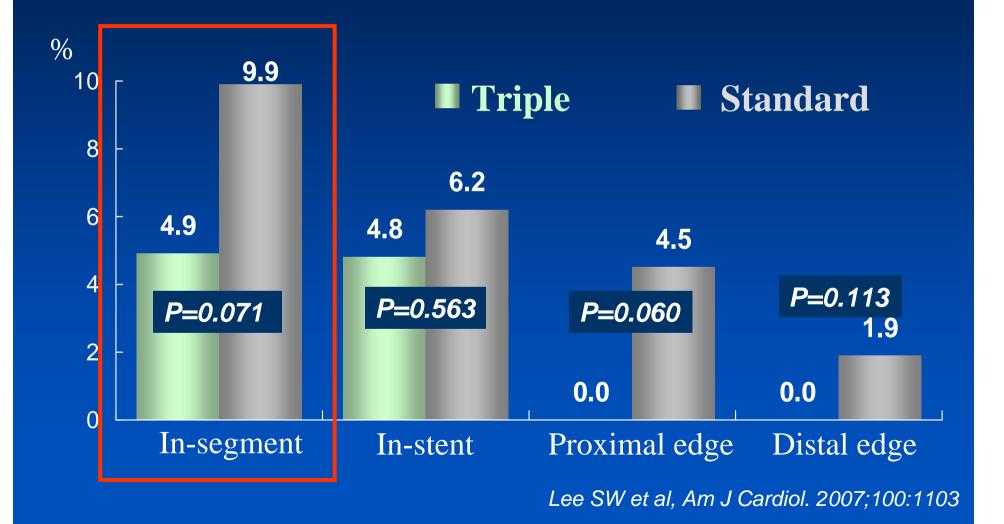
Stent Fracture in Long Lesion from Long-DES II in AMC

- Angiographic analysis : 415 long lesions
- Incidence of fracture : 7 (1.7%)

Variable	Fracture (+) (N=7)	Fracture (-) (N=408)	P value
Reference diameter, mm	$\textbf{2.86} \pm \textbf{0.21}$	2.82 ± 0.48	0.633
Lesion length, mm	$\textbf{38.4} \pm \textbf{18.8}$	34.6 ± 11.9	0.985
Stent length, mm	42.4 ± 19.0	41.0 ± 13.1	0.928
Acute gain, In-stent, mm	$\textbf{2.37} \pm \textbf{0.40}$	1.78 ± 0.53	0.005
Balloon to artery ratio	1.25 ± 0.20	$\textbf{1.24} \pm \textbf{0.19}$	0.834
Late loss, In-stent	$\textbf{0.71} \pm \textbf{0.48}$	0.26 ± 0.50	0.015
Restenosis, In-stent	1 (14.3 %)	29 (7.1 %)	0.411

Kim HS et al, Int J Cardiol 2008 (in press)

Incidence of TAXUS Express Stent Fracture

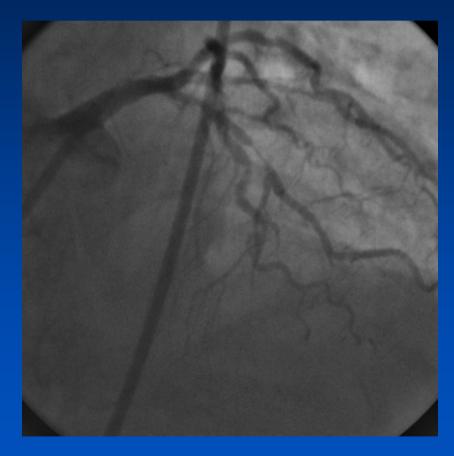

Study	Total	Fractures	Percentage
Taxus IV	875	2	0.23%
Taxus V	1401	12	0.86%
Taxus VI	589	2	0.34%
Altas	623	1	0.16%

 Long lesions > 28 mm, <50 mm We have clear cut-off value of IVUS parameters
 Very long lesions >50mm (Full Metal Jacket) Long-term outcome would be acceptable (stent thrombosis rate 0.8-1.5%, TVR 4-15%) Stent overlapping would be OK, The incidence of stent fracture is relatively low and this is not clearly related with angiographic restenosis too.

 Long lesions > 28 mm, <50 mm We have clear cut-off value of IVUS parameters
 Very long lesions >50mm What about long-term outcome ? Stent overlapping, stent fracture are really problems ?
 Impact of Cilostazol (Aspirin+Plavix+Cilostazol)

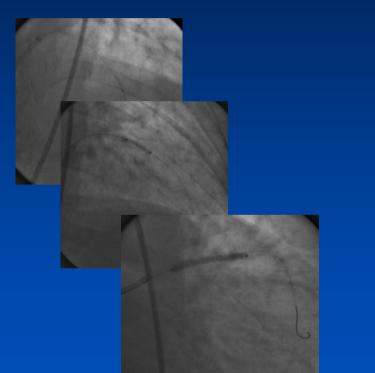
Angiographic Restenosis Rate at 9 months F/U

Long -DECLARE : Multicenter, Prospective Randomized study


Clinical Outcomes at 1 year

	Triple	Standard	Р
Patients	206	200	
Death Cardiac Non-cardiac	0 0 0	1 (0.5%) 1 (0.5%) 0	0.493
MI Stent thrombosis Acute Subacute Late	$\begin{array}{c}1\ (0.5\%)\\1\ (0.5\%)\\0\\1\\0\end{array}$	1 (0.5%) 1 (0.5%) 0 0 1	0.242 1.0
TLR MACE	5 (2.4%) 5 (2.4%)	16 (8.0%) 17 (8.5%)	0.014 0.007

Lee SW et al, Am J Cardiol. 2007;100:1103


Long lesions > 28 mm, <50 mm We have clear cut-off value of IVUS parameters
Very long lesions >50mm What about long-term outcome ? Stent overlapping, stent fracture are really problems ?
Impact of Cilostazol
Very long lesions with extended to the small distal vessel

Extremely Long Lesion CTO in distal LAD, BMS-ISR in proximal LAD



Do you believe CABG better ?

Medical treatment is another good treatment modality. How to treat the distal LAD leson ? (very diffuse and small vessel disease) Full lesion coverage vs. Spot stenting ?

Cypher 3.0 x 33 After repeated ballooning

I do not prefer two-step procedure, but for particular this case, I would like to wait and see the changes of ischemic territory and distal coronary flow.

 Shorter and Bigger, the better Stented length<50 mm and/or Stent CSA>5.5 mm2
 IVUS guided procedure may be helpful
 Multiple overlapping would be OK
 Triple antiplatelet therapy may be helpful to reduce the TLR and MACE

Thank You !!

summitMD.com