OCT Assessment of Post-DES Vascular Healing: Experimental Insights and Histology Correlates

Juan F. Granada, MD

Medical Director, Skirball Center for Cardiovascular Research The Cardiovascular Research Foundation Columbia University Medical Center

Columbia Univer Medical Center

Pathological Correlates of Late DES Thrombosis: Strut Coverage

High Resolution Near Field Imaging of Stent and Peri-Stent Areas

OCT and Vascular Healing Assessment Following DES Implantation

- Due to the high resolution, OCT is rapidly emerging as the \bullet "ideal" clinical tool for evaluating vascular healing following DES implantation:
- Visualization of intimal proliferation of drug-eluting stent and bare mental stent by use of optical • coherence tomography. Chen et al. Zhonghua Yi Xue Za Zhi. 2006 Apr 25;86(16):1102-6.
- Neointimal coverage of sirolimus-eluting stents at 6-month follow-up : evaluated by optical coherence tomography. Matsumoto et al. Eur Heart J. 2007 Apr;28(8):961-7.
- Neointimal coverage of bare-metal and sirolimus-eluting stents evaluated with optical coherence tomography. Chen BX eat al. Heart. 2008 May;94(5):566-70.
- Neointimal coverage of sirolimus-eluting stents 6 months and 12 months after implantation: evaluation by optical coherence tomography. Yao ZH. Chin Med J (Engl). 2008 Mar 20;121(6):503-7.
- Optical coherence tomography: high resolution intravascular imaging to evaluate vascular healing after coronary stenting. Guagliumi G et al. Catheter Cardiovasc Interv. 2008 Aug 1:72(2):237-47.
- However, the ability of OCT to make accurate measurements of stent strut coverage has not been validated in vivo.

How Could OCT Evaluate Vascular Healing Following DES Implantation?

PRESENT:

Assessing the <u>amount</u> of <u>neointimal tissue</u> formed on the surface of the strut.
Quantifying the <u>number</u> of <u>stent struts</u> that are properly covered. FUTURE:

• Assessing the degree of *functional stent coverage*.

• Characterizing the <u>tissue</u> <u>type</u> covering the struts (i.e., fibrin).

COLUMBIA UNIVERSITY MEDICAL CENTER NewYork-Presbyterian
The University Hospital of Columbia and Cornel

Validation of Several Morphometric Parameters Analyzed Following OCT: A Histology Correlation Study in Swine

- 14 Swine, Stents (11 Vision, 11 Xience, 10 Endeavor, 10 Taxus)
- OCT acquisition: LightLab Imaging, time domain OCT, 1300nm reported resolution of 15 um, pullbacks obtained at 1mm/sec, 15.6Hz frame rate:
 - 396 total frames were analyzed (143 matched with histology).
 - Second observer for intra and inter observer variability
 - Measured: NA, %AS, NT, uncovered and covered struts.
- Histology analysis:
 - Sectioned to correspond with OCT, stained with H&E and van Gieson's
 - Histomorphometry: Neointimal area, %AS, NT, uncovered and covered struts.
 - SEM: overall assessment of lumen coverage and endothelialization

Analysis of <u>Neointimal Area</u> Using OCT in Different DES Types (28 Days)

Analysis of <u>%AS</u> Using OCT in Different DES Types (28 Days)

Analysis of <u>Neointimal Thickness</u> Using OCT in Different DES (28 Days)

FOUNDATION

MEDICAL CENTER

Analysis of <u>Stent Area</u> Using OCT in Different DES Types (28 Days)

OCT Intra-Observer Variability

OCT Inter-Observer Variability

Validation Study of Strut Coverage Analyzed Following OCT Imaging Accuracy for the Evaluation of Strut Coverage

COLUMBIA UNIVERSITY MEDICAL CENTER

Acwifork-Presbyterian
 The University Hospital of Columbia and Cornel

Analysis of <u>Strut Coverage</u> Using **OCT in Different DES Types (28 Days)**

O U N D A T I O N

COLUMBIA UNIVERSITY __ NewYork-Presbyterian

0.8

0.9

0.6

0.7

The University Hospital of Columbia and Cornel

Proportion of Neointimal Thickness by OCT & Histology in DES: Implications for Individual Strut Coverage Analysis

CARDIOVASCULAR RESEARCH

O U N D A T I O N

NewYork-Presbyterian
 The University Hospital of Columbia and Cornel

MEDICAL CENTER

Strut Coverage by OCT BMS versus DES at Different Time Points

Percentage of Uncovered Stent Struts as Assessed by OCT (M3 and M4) and Histology at Different Time Points

CARDIOVASCULAR RESEARCH

Strut Coverage by OCT **BMS versus DES at Different Time Points**

CARDIOVASCULAR RESEARCH OUNDATION

MEDICAL CENTER

COLUMBIA UNIVERSITY _ NewYork-Presbyterian The University Hospital of Columbia and Cornel

"The Protruding Strut": Implications for Healing and Coverage

ABDICAL CENTER

COLUMBIA UNIVERSITY __ NewYork-Presbyterian The University Hospital of Columbia and Cornel

The Protruding Strut: Is It an OCT **Surrogate of Vascular Healing?**

CARDIOVASCULAR RESEARCH FOUNDATION

The Protruding Strut and Neointimal Thickness at 14 Days

CARDIOVASCULAR RESEARCH

COLUMBIA UNIVERSITY MEDICAL CENTER

The Protruding Strut and Strut **Coverage at 14 Days**

CARDIOVASCULAR RESEARCH FOUNDATION MEDICAL CENTER

Limitations: Insufficient Resolution to Detect Thin Neointima

Histological NT (mean):

- Xience 0.040 mm
- Taxus 0.038 mm
- Endeavor 0.042 mm

Columbia University Medical Center

Limitations: Areas of Difficult Interpretation

The University Hospital of Columbia and Cornel

The Challenges of the Qualitative Assessment of Strut Coverage by OCT **Strut Coverage versus Endothelialization**

- The mean cross sectional diameter of an individual EC ightarrowis out of the range of resolution of OCT.
- Therefore, strut coverage by OCT must be seen as a ightarrowmarker of the amount of tissue deposited on the surface of the stent and not as a marker of stent endothelialization.
- Strut coverage occurs early after stent implantation, \bullet occurring earlier and in a higher proportion in DES.
- In addition, the amount of strut coverage identified in ightarrowvivo by OCT must be interpreted with caution as the strut may be covered by tissue other than healthy ECs (i.e., fibrin).

OCT Histological Correlates Drug Eluting Stents at 28 Days

EDICAL CENTER

Different Neointimal Patterns Seen in OCT Following DES Implantation

Cypher - 6 Months

Cypher - 6 Months

Taxus - 13 Months

COLUMBIA UNIVERSITY MEDICAL CENTER | NewYork-Presbyterian | The University Hospital of Columbia and Cornel

Endovascular Imaging and Vascular Healing: "Stent Coverage Risk Score"

- Degree of strut coverage:
 - Endothelial Cells.
 - Others.
- Fibrin deposition:
 - Superficial (peri-strut).
 - Deep (vessel wall).
- Vessel wall inflammation.
- Overall vessel wall "assessment":
 - Pro-thrombogenic surface versus
 - Anti-thrombogenic surface.

OCT Imaging and Vascular Healing Assessment Following DES Implantation

- Today, due to significant improvements in OCT technology, the in vivo assessment of vascular healing following stent implantation is possible.
- OCT can accurately and reproducibly measure subtle changes in ulletneointimal area, thickness, and percent area of stenosis.
- The assessment of strut coverage is feasible and reproducible. However, its clinical significance is still unknown and further research ightarrowis required to elucidate the importance of this finding.
- As these biological changes may be technology-specific, tissue characterization studies using different DES technologies are igodotessential.
- Due to its technical limitations in the far field, IVUS-OCT combination igodoltechniques will be required...and developed.
- In the future, it is possible that lessons learned from prospective clinical trials using this technology, will provide the basis to enhance ulletthe safety profile of DES.

