Utilities and Pitfalls of Composite and Surrogate Endpoints in Clinical Trials Helen Parise, ScD

Cardiovascular Research Foundation Columbia University Medical Center

Common CV Clinical Endpoints

- Death (Cardiac, Non-Cardiac)
- Myocardial Infarction (Q-Wave, NQWMI)
- Stent Thrombosis (subcategories)
- Target Lesion Revascularization
- Target Vessel Revascularization

Surrogate Endpoints

- What is a surrogate endpoint?
 - An outcome measure which may occur sooner or with greater frequency than the "true" outcome of interest
 - Predictive of the "true" clinical endpoint
 - In the causal pathway

Treatment → Surrogate → Clinical Endpoint

Surrogate Endpoints in DES Studies

- Surrogates in DES Studies
 - Usually continuous variables that are objectively quantifiable and reproducible
- IVUS: Neointimal Volume
- Angiographic:
 - Late Lumen Loss
 - Percent Diameter Stenosis

Surrogate Endpoints

- Why use surrogate endpoints?
 - Reduce sample size with adequate power
 - fewer patients + shorter follow-up = reduced costs
 - Avoid/minimize randomizing patients to a therapy which might not provide benefit or possibly cause harm
 - Test new technologies and be able to anticipate their outcomes

Surrogate Endpoints

 How do I know if a surrogate is good enough to use in my clinical trial?

Statistical Criteria for Evaluating a Surrogate

- Access to patient level data from multiple well conducted trials is required
- Analysis of 11 trials evaluating DES v. BMS
 - TAXUS-IV, TAXUS-V, TAXUS-VI, SIRIUS, E-SIRIUS, C-SIRIUS, RAVEL, DELIVER, REALITY, ENDEAVOR II, ENDEAVOR III
- In-Segment and In-Stent Late Loss (LL) and %DS were evaluated

Statistical Criteria for Evaluating a Surrogate

1. Consistent evidence of treatment differences within each trial

1. Evidence of treatment difference

• Z-Scores for Treatment Difference

					E-	C-		DE-	RE-		
	TAX	TAX	TAX	SIR-	SIR-	SIR-	RA-	LIV-	AL-	END	END
	IV	V	VI	IUS	IUS	IUS	VEL	ER	ITY	II	
In-Sten	t										
LL	11.6	10.5	10.6	18.7	14.5	8.2	13.7	3	7.4	9.2	8.3
%DS	12.5	10	10.5	18.5	14	8.1	11.9	2.7	3.3	8.5	6.5
In-Segr	nent										
LL	8.9	7.3	7.2	13.1	11.1	5.8	9.8	2.3	4.5	7.7	4.4
%DS	9.4	6.2	8.2	13.3	11	6.8	7.2	2.3	2.5	7.3	3.4
TLR	4.7	4	3.6	7.1	6.1	3.1	3.8	1.3	1.1	4	1.1

Statistical Criteria for Evaluating a Surrogate

- 1. Consistent evidence of treatment differences within each trial
- 2. Strong relationship with clinical outcome

Pocock, et al., JACC 2008; 51 p 23-32

Columbia University Medical Center

2. Relationship to clinical outcome

 c-statistics summarizing the strength of association to TLR in each trial

	In-S [*]	tent	In-Seg	gment		In-S	tent	In-Se	gment
Trial	LL	%DS	LL	%DS	Trial	LL	%DS	LL	%DS
TAXUS-IV	0.9	0.94	0.92	0.97	RAVEL	0.98	0.93	0.91	0.95
TAXUS-V	88.0	0.9	0.91	0.95	DELIVER	0.85	0.86	0.86	0.91
TAXUS-VI	0.86	0.87	0.89	0.95	REALITY	0.9	0.93	0.93	0.98
SIRIUS	88.0	0.9	0.92	0.95	END. II	0.88	0.91	0.88	0.95
E-SIRIUS	0.94	0.95	0.92	0.95	END. III	0.77	0.8	0.93	0.95
C-SIRIUS	0.86	0.86	0.93	0.94	Averaged	0.88	0.9	0.91	0.95

Statistical Criteria for Evaluating a Surrogate

- 1. Consistent evidence of treatment differences within each trial
- 2. Strong relationship with clinical outcome
- 3. Treatment difference in clinical outcome statistically explained by the surrogate *within* each trial [Prentice criterion]

3. Treatment Differences explained within trial [Prentice criterion]

Percent treatment effect explained* (largest 5 trials shown)

	In-S	Stent	In-Se	In-Segment		
Trial	LL	%DS	LL	%DS		
TAXUS-IV	98	138	83	83		
TAXUS-V	101	94	82	47		
TAXUS-VI	115	124	75	114		
SIRIUS	132	142	91	103		
ENDEAVOR II	100	119	82	107		

* from logistic model for log odds of TLR after potential surrogate (e.g., LL) is added as predictor variable.

Statistical Criteria for Evaluating a Surrogate

- 1. Consistent evidence of treatment differences within each trial
- **2.** Strong relationship with clinical outcome
- 3. Treatment difference in clinical outcome statistically explained by the surrogate *within* each trial [Prentice criterion]
- 4. Magnitude of treatment difference in clinical outcome clearly linked to magnitude of treatment difference in surrogate *across* trials [Hughes criterion]

4. Relating size of treatment effect across trials [Hughes criterion]

Example: XIENCE V

- SPIRIT III trial
- Primary endpoint: in-segment late loss at 8 months

	Xience V	Taxus	
Ν	669	332	
Mean Late Loss	0.14mm	0.26mm	P=0.003
Target Lesion Revasc.	3.4%	5.6%	P=0.12
1 year MACE	6.0%	10.3%	P=0.02

 Larger long term trials (and registries) underway to assess patient safety re death, MI, stent thrombosis

Stone, et al. JAMA 2008; 299 p 1903-1913

Surrogates

- Reduced trial size → more efficient progress
- LL and % DS both look good as surrogates for TLR in DES
- Use can speed up the regulatory process ...
 IF the surrogate is acceptable to the regulatory agency

Surrogate Endpoints – Some Pitfalls

- May not predict clinical events in "real world"
- Surrogates for efficacy may not (and likely do not) predict safety
- Can lead to premature approval of potentially unsafe treatment
- Missing data issues: e.g. incomplete follow-up in angiographic endpoints may bias results

- What is a Composite Endpoint?
 - Common in Cardiovascular Trials
 - Usually a group of clinical outcomes considered together to form a single endpoint
 - Generally weighted equally
 - Experiencing any of the individual outcomes → experiencing the composite

Composite Endpoints: Examples

- Examples of Composite Endpoints used in Cardiovascular Trials
 - Cardiac death/MI
 - Device-oriented (TLF): cardiac death/MI/TLR
 - TVF: cardiac death/MI/TVR
 - MACE: a mixed bag (and varies from study to study!)

- Why use Composite Endpoints?
 - Gain in statistical power
 - Simple summary of several outcomes
 - Captures broader range of treatment experience
 - Multiple outcomes tested simultaneously without alpha "hit" for multiplicity
 - Avoids (some) issues of competing risks

Considerations

- All components should be affected <u>equally</u> by treatment otherwise composite may be diluted
- All components should be clinically relevant
- All components should be defined as secondary and reported separately

- In a review of 14 journals between 1 Jan 2000 and 1 Jan 2007
 - Of all cardiovascular trials (1231), 37% used composite endpoints
 - 98% of these included Mortality as a component
 - Typically 3 to 4 outcomes were included (based on the IQR)

CARDIOVASCULAR RESEARCH F O U N D A T I O №

Lim, et al. Ann Intern Med. 2008;149:612-617

Columbia University Medical Center

Example: SYNTAX

"SYNTAX trial fails to show non-inferiority for DES" - Cardiovascular News, Sept 2008

- 1800 patients with left main/3 vessel disease comparing CABG vs. TAXUS
- MACCE =

death/stroke/MI/Revascularizations

- I-Year results were complex
- QOL results presented at ACC '09

Example: SYNTAX (1-year Results)

	CABG	TAXUS	
N Randomized	897	903	
MACCE (primary)	105 (12.4%)	159 (17.8%)	P=.002
Death	30 (3.5%)	39 (4.4%)	
Stroke	19 (2.2%)	5 (0.6%)	P=.003
MI	28 (3.3%)	43 (4.8%)	
Death/MI/Stroke	65 (7.7%)	68 (7.6%)	P=.98
Revascularization	50 (5.9%)	120 (13.5%)	P<.0001
PCI	40 (4.7%)	102 (11.4%)	
CABG	11 (1.3%)	25 (2.8%)	

Serruys, et al. N Engl J Med 2009; 360:961-972

CARDIOVASCULAR RESEARCH

Example: HORIZONS (30 day Results)

 Evaluating efficacy and safety in composite endpoint

	Heparin +IIb/IIIa	Bivalirudin alone	
Ν	1802	1800	
Major Bleed	8.3%	4.9%	P<0.001
MACE*	5.5%	5.4%	
Net Adverse Clinical Events	12.1%	9.2%	P=0.005
Death	3.1%	2.1%	P=0.047

* MACE = Death/MI/Stroke/TLR

Stone, et al. JAMA 2008; 299 p 1903-1913

Composite Endpoints: Some Pitfalls

 Survival analysis may count less severe outcomes over more severe (e.g. TLR vs. Mortality)

Example: MACE = Death/MI/Stroke/TLR

Patient A has TLR at 5 months but survives and feels well through end of trial (5 years)

 \rightarrow Time to MACE = 5 months

Patient B has no TLR, MI or Stroke, but dies at 9 months \rightarrow Time to MACE = 9 months

Q: Is patient A really worse off than patient B?

Composite Endpoints: Some Pitfalls

- Can be misleading
 - MACE = Death/MI/Stroke/TLR
 - Why not

MACE = TLR/MI/Death/Stroke?

 Most important component listed first, but often has the lowest event rate (i.e. is the LEAST represented in the composite)

Composite Endpoints: Some Pitfalls

- All components tend to be treated equally
 - Can be weighted (but what are correct weights?)
- Some might presume that benefits relate to ALL components
- May dilute real treatment differences by including elements unaffected by treatment (impact on non-inferiority?)
- Can be difficult to interpret

CONCLUSIONS

- Both surrogates and composite endpoints are extremely useful for reducing sample sizes (increasing power)
- Both can get "better" treatments to patients faster
- But ...
- Proceed with CAUTION!

