Mechanisms of Plaque destabilization Pathologic Observations

March 29th 2009 American College of Cardiology

Renu Virmani, MD

CVPath Institute Inc.,

Gaithersburg, Maryland, USA

Conflict: Nothing to declare

Branch points are the sites of atherosclerosis and occur in areas of low shear

Carotid Artery

Left Coronary artery

Progression of Human Coronary Atherosclerosis

Causes of Coronary Thrombosis

Erosion

Virmani R, et al. Arterioscler Thromb Vasc Biol 2000;20:1262

Do thin cap fibroatheromas (vulnerable plaques) go on and Rupture?

- Necrotic core (21.6±23.7%)
- Thin fibrous cap (< 65 μm)
- Cap infiltrated by macrophages and lymphocytes
- Cap composition type 1 collagen with few or absent smooth muscle cells

Plaque Rupture

- Discontinuous fibrous cap (23±19 μm)
- Underlying necrotic core (29.0±19.0%)
- Luminal thrombus

Thin cap Fibroatheroma (Vulnerable Plaque) Coronary Artery

Plaque rupture with mild non occlusive thrombus: mechanism by which plaques progress (asymptomatic)

Silent Ruptures and Erosions lead to Plaque Progression

Sirius red

Sirius red with polarized light

Mean % stenosis increases with number of prior rupture sites

Burke, A P et al. Circulation 2001;103:9364-940

Prevalence of Older Thrombus is an Independent Predictor of Long-Term Mortality In Patients with STEMI

Patient Data, by Culprit Plaque

Culprit Lesion	Patient age (years)	Male Gender	Diabetes	Hyper- tension	Smoking
Rupture (n=65)	52±10	58 (89%)	7 (11)	15 (23)	11 (17)
Erosion (n=50)	43±9	37 (74%)	6 (12)	6 (12)	10 (20)
P value	<0.0001	0.03	0.67	0.84	0.13

Continuous variables are expressed as mean ± SD

Plaque Rupture

Plaque Erosion

Organizing Thrombus

Kramer MCA, et al Submitted

Location of Coronary Ruptures and Erosions and % Fresh and Healing Thrombi

Characteristics of Thrombi, and underlying x-sectional area narrowing

Patient /Plaque	<75% Stenosis (n=53)			≻75% Stenosis (n=62)		
Characteristics	Rupture (N=23)	Erosion (n=30)	P value	Rupture (n=42)	Erosion (n=20)	P value
Patient age	52±12	43±9	0.02	52.±9	44±8	0.003
Male Gender	22 (96)	22 (73)	0.02	36 (86)	15 (75)	0.30
Thrombus age			0.001			0.03
Early	12 (52)	3(10)		18(43)	3(15)	
Late	11(48)	27(90)		24(57)	17(85)	
IEL area (mm2)	13.6±5.2	9.2±3.9	0.001	13.7±6.5	10.0±6.7	0.002
Plaque Burden	217±72	179±69	0.08	237±65	207±73	0.18
Necrotic core	23(100)	14(47%)	<0.001	42 (100)	11(55)	<0.0001
Necrotic core area mm2	2.99±2.7 4	0.63±1.1. 2	<0.0001	4.98±5.0	1.16±1.4 6	<0.0001
Necrotic core area %	33.6±23. 5	10.4±17.	<0.0001	36.8±23.4	15.5±18. 1	0.001
Macrophage area mm2	4.3±2.7	2.2±2.2	0.003	3.0±2.7	3.1±3.2	0.86

Plaque Erosion

Kolodgie FD, et al. ATVB 2002;22:1642

Stable Erosion

Kolodgie FD, et al. ATVB 2002;22:1642

Different Accumulation of Proteoglycan and Hyaluronan in Different Culprit lesions

Kolodgie FD, ATVB 2002

Intramyocardial Emboli more Common in Plaque Erosion vs. Plaque Rupture

Intramyocardial Emboli and Myocardial Necrosis

In hearts with intramyocardial emboli:

- 57% associated with focal myocardial necrosis
 - Of these, 83% with multiple emboli (86% in vessels <120 μm in diameter)
- 24% associated with acute MI, 5% with myocardial scars (healed MI), 14% with normal myocardium

Conclusions: Healing of Ruptures vs. Erosions

- ➤ The etiology and pathologenesis of Ruptures and Erosions is significantly different regarding inflammation, remodeling, growth rate, and healing of thrombus.
- Plaque erosions are associated with late stage maturation of thrombus as compared to ruptures
- ➤ Healing thrombi are seen in 85% of erosions versus 55% of ruptures and clinical studies have suggested that healing thrombi clinically have worse prognosis in patients presenting with STEMI (*Kramer MCA, Circulation 2008.*)
- Plaque erosions have been associated with greater distal embolization as compared to rupture (74% vs. 38%)
- ➤ Therefore understanding erosions which are more common in women <50 years may need different modality of artery interrogation as well as treatment strategies than men.

Multi-slice CT vs. Histology Non- calcified plaque Spotty calcification Necrotic core Non- calcified plaque Macrophage infiltration Necrotic core OM1 Contrast agents Courtsey Udo Hoffman M.D. Non- calcified plaque

Possibility of OCT imaging Findings from Ex-Vivo Imaging

Thin-cap fibroatheroma

OCT images taken by Hoffmann, U & Donnelly, P. MGH

Detecting Macrophages in Vulnerable Plaque

Tearney, G. J. et al. Circulation 2003;107:113-119

Possibility of OCT imaging Findings from Ex-Vivo Imaging

Fibrous plaque with calcification

Fibroatheroma

OCT images taken by Hoffmann, U & Donnelly, P. MGH