Advancing Outcomes with Next Generation DES

Ian T. Meredith
MBBS, PhD, FRACP, FCSANZ, FACC, FSCAI, FAPSIC
Professor of Cardiology, Monash University, Director of Monash Heart
Monash Medical Centre, Southern Health
Melbourne, Australia

Potential Conflicts of Interest

- Strategic and Scientific Advisory Boards:

Medtronic Vascular, Boston Scientific

Which one of these sheep is the most atfractive?

Please fick box!

The Ideal DES

\checkmark Remarkable ease of use
, Unparalleled efficacy

- Suppression of neointimal hyperplasia
\checkmark Impeccable safety
- No adverse effects on vessel function or flow dynamics
- No risk of LST or VLST
- No need for more than short term DAPT

Desirable Technical Qualities in a DES

〉 Easy to deliver, pushable and trackable
४ Low profile but visible
\checkmark Flexible in a crimped state
८ Flexible and conformable in an expanded state
४ Complete or near-complete apposition
? Good scaffolding and excellent radial strength
? Minimal vessel and intimal injury
, Thromboresistant materials
२ Rapid re-endothelialization
\checkmark Functional endothelial layer (NO producing)
४ Reliable and consistent inhibition of NIH
, Minimal or no long term inflammation
४ No persistent responses or long term safety concerns
\checkmark Available in the widest range of sizes and lengths

- Competitively priced and on consignment

Drug Eluting Stent Landscape

- Abbott
- Xience V
- BVS
- Biosensors
- BioMatrix
- Biotronik
- Abs Magnesium
- Boston Scientific
- Taxus Liberte
- Promus
- Taxus Element
- Promus Element
- Cardiomind
- Sparrow
- Cordis
- Cypher
- Nevo
- Elixir Medical
- Medtronic
- Endeavor
- Resolute
- Terumo
- Nobori

Drugs

Stent

Drug
Mol.mass

Formula

Cypher

Nevo
Xience V
Everolimus 958.224
$\mathrm{C}_{53} \mathrm{H}_{83} \mathrm{NO}_{14}$
Promus
Promus Element

Exella	Novolimus	900	$\mathrm{C}_{50} \mathrm{H}_{77} \mathrm{NO}_{13}$
BioMatrix Nobori	Biolimus A9	$\mathbf{9 8 6 . 2 9}$	$\mathrm{C}_{55} \mathrm{H}_{87} \mathrm{NO}_{14}$
Endeavor End Resolute	Zotarolimus	966.2	$\mathrm{C}_{52} \mathrm{H}_{79} \mathrm{~N}_{5} \mathrm{O}_{12}$
Taxus Liberte Taxus Element	Paclitaxel	853.91	$\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{NO}_{14}$
MONASHHEART		Angioplasty Summit-TCT Asia Soeul April 2009	

Lipophilicity

Octinol water partition coefficient

Comparative Elution Profile

Generational Changes in Stent Specs

| | Elemental Composition by Weight \% | | |
| :--- | :---: | :---: | :---: | :---: |

Thinner Stent Struts, Less Polymer Coating, Lower Drug Load

Stent

Cypher
Taxus Express
Taxus Liberte
Biomatrix
Endeavor
Xience
CardioMind

Strut Thickness
$140 \mu \mathrm{~m}$
$132 \mu \mathrm{~m}$
$97 \mu \mathrm{~m}$
$137 \mu \mathrm{~m}$
$91 \mu \mathrm{~m}$
$81 \mu \mathrm{~m}$
$67 \mu \mathrm{~m}$

Polymer Thickness

$12.6 \mu \mathrm{~m}$	$\sim 10 \mathrm{ug} / \mathrm{mm}$	Wedge
$16 \mu \mathrm{~m}$	$1 \mathrm{ug} / \mathrm{mm} 2$	Wedge
$16 \mu \mathrm{~m}$	$1 \mathrm{ug} / \mathrm{mm} 2$	Wedge
	$15.6 \mu \mathrm{~g} / \mathrm{mm}$	
$5.3 \mu \mathrm{~m}$	$10 \mathrm{ug} / \mathrm{mm}$	Oval
$7.8 \mu \mathrm{~m}$	$\sim 6 \mathrm{ug} / \mathrm{mm}$	Square
$8 \mu \mathrm{~m}$	$6.3 \mathrm{ug} / \mathrm{mm}$	Oval

XIENCE V DES Crossing Profile

CRIMPED SYSTEM

TIP ENTRY PROFILE

Excellent Stent Retention

XIENCE V: Drug Load

Decision-Making in a Multi-DES Environment

We use published and peer-reviewed evidence, peer and personal opinion
8 Patient

- Age - frailty, life expectancy
- Presentation - acute MI, high risk ACS
- Comorbidities - DM, CRF, surgical needs, bleeding
- Socio-economic - compliance with DAPT, remote location
\geqslant Vessel
- Left Main, prox LAD, multivessel, small vessel, graft

》 Lesion

- Long lesion, bifurcation, ostial, thrombus, angulated

จ Laboratory Factors

- Contractural agreements, commercial and research relationships

The Big Four

7. All have strong pre clinical programs
\checkmark All have well constructed, large scale clinical trial programs

- Met surrogate endpoints
- Met hard objective single and composite clinical endpoints
- Established short to medium term clinical safety
> All are widely accepted and used in front line clinical applications almost globally

Current XIENCE V Clinical Trials

4 year F/U
SPIRIIT
FIRSTL

Safety and
Performan

Europe
$\mathrm{N}=60$

Practical "Real World" Application of Evidence in a Multi-DES Environment

, Work horse lesion with or without caveats
, Complex lesion
\checkmark Patient

- Age - frailty, life expectancy
- Presentation - acute MI, high risk ACS
- Comorbidities - DM, CRF, surgical needs, bleeding
- Socio-economic - compliance with DAPT, remote location
\checkmark Vessel
- Left Main, prox LAD, multivessel, small vessel, graft
- Lesion
- Long lesion, bifurcation, ostial, thrombus, angulated

SPIRIT II \& III Meta-Analysis

Ischemic MACE Through Two Years

SPIRIT II \& III Meta-Analysis

Cardiac Death and MI Through Two Years

SPIRIT II \& II Meta-Analysis

Practical Real World Application of Evidencein a Multi-DES Environment

》 Work horse lesion with caveats
> Complex
\checkmark Patient

- Age - frailty, life expectancy
- Presentation - acute MI, high risk ACS
- Comorbidities - DM, CRF, surgical needs, bleeding
- Socio-economic - compliance with DAPT, remote location
\checkmark Vessel
- Left Main, prox LAD, multivessel, small vessel, graft
\checkmark Lesion
- Long lesion, bifurcation, ostial, thrombus, angulated

Very Late Stent Thrombosis

Cumulative Incidence of $1^{\text {st }}$ Generation DES to 4 and 5 yrs

DES In Perspective: VLST ARC Def/Prob ST Landmark Analysis

Practical Application of Evidence in a Multi-DES Environment

४ Work horse lesion with or without caveats
》 Complex lesions - Patient

- Age - frailty, life expectancy
- Presentation - acute MI, high risk ACS
- Comorbidities - DM, CRF, surgical needs, bleeding
- Socio-economic - compliance with DAPT, remote location
\checkmark Vessel
- Left Main, prox LAD, multivessel, small vessel, graft
\checkmark Lesion
- Long lesion, bifurcation, ostial, thrombus, angulated

T-stent

Stent crush

Side Branch Expansion Comparison

-

Conventional photos and Cell Size after SB Dilatation with a 4 mm Balloon

CoStar

TCT(1)0 7 Liberte

Bx Velocity

Driver
Courtesy of J. Ormiston

Express

Select

Vision

Source; CRTOnline "Simple and Complex Bifurcation Lesions; Classification, Single and Dual Stent Options, Clinical
Outcomes, and a Simple Treatment Algorithm Y. Louvard
Angioplasty Summit-TCT Asia Soeul April 2009

Closed Cell Design

Practical Application of Evidence in a Multi-DES Environment

- Work horse lesion with or without caveats
> Complex lesions
AMI

Pasceri Meta Analysis of Clinical Trials of DES compared to BMS in AMI

No	$\% \text { F }$ Sex	Mean Age	DES	Angio F/U	Ilb/IIIa	LAD culprit	Rescue PCI	F/U mths	MACE Endpoints
									Death/
									MI/TVR

Pasceri	65	18	60	Cypher	100%	90%	50%	18%	12	21.7%
STRATEGY	175	27	63	Cypher	90%	100%	45%	No	8	25%
PASSION	605	24	61	Taxus Express	No	27%	45%	No	12	10.9%
TYPHOON	712	22	59	Cypher	26%	72%	50%	No	12	10.9%
SESAMI	320	19	61	Cypher	52%	NA	50%	18%	12	11.8%
HAAMU-	164	28	63	Taxus Express	88%	100%	44%	45%	12	15.2%
Stent	316	22	59	Cypher	82%	100%	55%	No	12	18.6%

HORIZONS AMI

Harmonizing Outcomes with Revascularization and Stents in AMI $\geq 3400^{*}$ pts with STEMI with symptom onset ≤ 12 hours

UFH + GP IIb/IIla inhibitor (abciximab or eptifibatide)

Bivalirudin monotherapy
 (\pm provisional GP IIb/IIIa)

」
Emergent angiography, followed by triage to...
CABG - Primary PCI - Medical Rx
3000 pts eligible for stent randomization

Bare metal stent
TAXUS paclitaxel-eluting stent

Clinical FU at 30 days, 6 months,
*To rand 3000 stent pts 1 year, and then yearly through 5 years

Primary Efficacy Endpoint: Ischemic TLR

Number at risk
TAXUS DES
EXPRESS BMS 749

2132
697

098
658

603

Primary Safety Endpoint: Safety MACE*

Stent Thrombosis (ARC Definite or Probable)

Number at risk
TAXUS DES 2238
EXPRESS BMS 744
2122
701

2098
683
629

Where to next ?

XIENCE Prime

- Built upon the XIENCE V body of clinical evidence
- Proven drug and polymer from XIENCE V
- Outstanding Acute Performance
- New stent delivery system for more responsive catheter performance
- Enhanced stent design** with connecting link and ring geometry for improved deliverability and conformability
- Short balloon tapers for safe deployment
- Higher RBP for confident placement
- Full matrix of lengths and diameters

- 46 sizes vs. 36 for XIENCE V

A Commitment to Innovation Redesigned Stent Delivery System

XIENCE V

XIENCE PRIME

Photographs taken by and on file at Abbott Vascular.

The SDS is completely redesigned
Feature
Benefit

- Redesigned SDS • Increased chassis
- Shorter balloon tapers
- Higher Rated Burst Pressure
- Softer tip flexibility
- Significantly lower deflation times
pushability and catheter response
- Reduced peri-stent injury
- Permits higher pressure deployment
- Easier lesion access
- Faster procedure times

A Commitment to Innovation Goal: More Available Sizes Than XIENCE V

XIENCE V

- Continuous Sizes:
$2.25-4.0 \mathrm{~mm}$ diameter
8 - 28 mm lengths
- Differences:

Longer lengths with XIENCE PRIME (33, 38)

Evolution of Stent Based Drug Delivery

Future Steps Fully Bioabsorbable Stent Design

- More uniform strut distribution
- More even support of arterial wall
- Lower MCUSA (maximum circular unsupported surface area)
- Lower late stent area loss
- Higher radial strength
- Improved stent retention
- Unchanged:
- Material
- Strut thickness

Conclusions

》 The current generations of DES address some but not all of the DES design issues．
》 Overall the programs are characterised by a move to lower profile more flexible stent platforms with lower strut and polymer thickness and potentially more biocompatible polymers．
》 The body of comparative data between programs remains small but is expanding．
》 Choosing a DES platform in this multi－platiform environment requires the adaptation and translation of the available evidence to patient，vessel，lesion characteristics and the overall clinical setting．

