Advancing Outcomes with Next Generation DES

lan T. Meredith

MBBS, PhD, FRACP, FCSANZ, FACC, FSCAI, FAPSIC Professor of Cardiology, Monash University, Director of Monash Heart Monash Medical Centre, Southern Health Melbourne, Australia

Potential Conflicts of Interest

 Strategic and Scientific Advisory Boards: Medtronic Vascular, Boston Scientific

The Ideal DES

Remarkable ease of use
 Unparalleled efficacy

 Suppression of neointimal hyperplasia

 Impeccable safety

 No adverse effects on vessel function or flow dynamics
 No risk of LST or VLST
 No need for more than short term DAPT

Desirable Technical Qualities in a DES

- Easy to deliver, pushable and trackable
- Low profile but visible
- Flexible in a crimped state
- Flexible and conformable in an expanded state
- Complete or near-complete apposition
- Good scaffolding and excellent radial strength
- Minimal vessel and intimal injury
- Thromboresistant materials
- Rapid re-endothelialization
- Functional endothelial layer (NO producing)
- Reliable and consistent inhibition of NIH
- Minimal or no long term inflammation
- No persistent responses or long term safety concerns
- Available in the widest range of sizes and lengths
- Competitively priced and on consignment

Drug Eluting Stent Landscape

- Abbott
 - Xience V
 BVS
- Biosensors

 BioMatrix
- Biotronik
 - Abs Magnesium
- Boston Scientific
 - Taxus Liberte
 - Promus
 - Taxus Element
 - Promus Element

- Cardiomind
 - Sparrow
- Cordis
 - Cypher
 - Nevo
- Elixir Medical
- Medtronic
 - Endeavor
 - Resolute
- Terumo
 - Nobori

Drugs							
Stent	Drug	Mol.mass	Formula				
Cypher Nevo	Sirolimus	914.17	С ₅₁ Н ₇₉ NO ₁₃				
Xience V Promus Promus Element	Everolimus	958.224	С ₅₃ Н ₈₃ NO ₁₄				
Exella	Novolimus	900	С ₅₀ Н ₇₇ NO ₁₃				
BioMatrix Nobori	Biolimus A9	986.29	С ₅₅ Н ₈₇ NO ₁₄				
Endeavor End Resolute	Zotarolimus	966.2	$C_{52}H_{79}N_5O_{12}$				
Taxus Liberte Taxus Element	Paclitaxel	853.91	C ₄₇ H ₅₁ NO ₁₄				
		Angioplasty Su	Immit-TCT Asia Soeul April 2009				

Octinol water partition coefficient

Comparative Elution Profile

Generational Changes in Stent Specs

	Elemental Composition by Weight %					
	316L (Stainless Steel)	Platinum Chromium Alloy	L605 (Cobalt Chromium Alloy)	MP35N (Cobalt Chromium Alloy)		
Iron	64	37	3.0 max	1.0 max		
Platinum	-	33	-	-		
Cobalt	-	-	52	34		
Chromium	18	18	20	20		
Nickel	14	9	10	35		
Tungsten	-	-	15	-		
Molybdenum	2.6	2.6	-	9.75		
Manganese	2.0 max	0.05 max	1.5	0.15 max		
Titanium	-	-	-	1.0 max		

Thinner Stent Struts, Less Polymer Coating, Lower Drug Load

Stent	Strut Thickness	Polymer Thickness	Drug Load	Shape
Cypher	140 μm	12.6 μm	~10 ug/mm	Wedge
Taxus Express	132 μm	16 μ m	1 ug/mm2	Wedge
Taxus Liberte	97 μ m	16 μ m	1 ug/mm2	Wedge
Biomatrix	137 μ m		15.6 μg/mm	
Endeavor	91 μ m	5.3 μ m	10 ug/mm	Oval
Xience	81 μ m	7.8 μ m	~6 ug/mm	Square
CardioMind	67 μm	8 μ m	6.3 ug/mm	Oval

XIENCE V DES Crossing Profile

CRIMPED SYSTEM

TIP ENTRY PROFILE

Excellent Stent Retention

XIENCE V: Drug Load

Decision-Making in a Multi-DES Environment

We use published and peer-reviewed evidence, peer and personal opinion

Patient

- Age frailty, life expectancy
- Presentation acute MI, high risk ACS
- Comorbidities DM, CRF, surgical needs, bleeding
- Socio-economic compliance with DAPT, remote location
- Vessel
 - Left Main, prox LAD, multivessel, small vessel, graft

Lesion

Long lesion, bifurcation, ostial, thrombus, angulated

Laboratory Factors

Contractural agreements, commercial and research relationships

The Big Four

All have strong pre clinical programs All have well constructed, large scale clinical trial programs

- Met surrogate endpoints
- Met hard objective single and composite clinical endpoints
- Established short to medium term clinical safety

 All are widely accepted and used in front line clinical applications almost globally

Current XIENCE V Clinical Trials

Practical "Real World" Application of Evidence in a Multi-DES Environment

- Work horse lesion with or without caveats
- Complex lesion
 - Patient
 - Age frailty, life expectancy
 - Presentation acute MI, high risk ACS
 - Comorbidities DM, CRF, surgical needs, bleeding
 - Socio-economic compliance with DAPT, remote location

Vessel

Left Main, prox LAD, multivessel, small vessel, graft

Lesion

Long lesion, bifurcation, ostial, thrombus, angulated

SPIRIT II & III Meta-Analysis

Ischemic MACE Through Two Years

NASHHEART

SOURCE: Gregg Stone, SPIRIT II & III Meta Analysis Two Year Results, TCT 2008

NASH**HEART**

Practical Real World Application of Evidencein a Multi-DES Environment

Work horse lesion with caveats

Complex

Patient

- Age frailty, life expectancy
- Presentation acute MI, high risk ACS
- Comorbidities DM, CRF, surgical needs, bleeding
- Socio-economic compliance with DAPT, remote location

Vessel

• Left Main, prox LAD, multivessel, small vessel, graft

Lesion

• Long lesion, bifurcation, ostial, thrombus, angulated

Very Late Stent Thrombosis Cumulative Incidence of 1st Generation DES to 4 and 5 yrs

Wenaweser et al; J Am Coll Cardiol 2008;52:1134-40 Kirtane et al; TCT2007: On--Label CYPHER and TAXUS Randomized Trials with 5--Year Follow

DES In Perspective: VLST ARC Def/Prob ST Landmark Analysis

3. Stone GW et al. PCR 2008.

Practical Application of Evidence in a Multi-DES Environment

Work horse lesion with or without caveats

Complex lesions

- Patient
 - Age frailty, life expectancy
 - Presentation acute MI, high risk ACS
 - Comorbidities DM, CRF, surgical needs, bleeding
 - Socio-economic compliance with DAPT, remote location

Vessel

Left Main, prox LAD, multivessel, small vessel, graft

Lesion

Long lesion, bifurcation, ostial, thrombus, angulated

Side Branch Expansion Comparison

MONASHHEART

Practical Application of Evidence in a Multi-DES Environment

Work horse lesion with or without caveats
 Complex lesions
 AMI

Pasceri Meta Analysis of Clinical Trials of DES compared to BMS in AMI

	Νο	% F Sex	Mean Age	DES	Angio F/U	lib/illa	LAD culprit	Rescue PCI	F/U mths	MACE Endpoints Death/ MI/TVR
Pasceri	65	18	60	Cypher	100%	90%	50%	18%	12	21.7%
STRATEGY	175	27	63	Cypher	90%	100%	45%	Νο	8	25%
PASSION	605	24	61	Taxus Express	Νο	27%	45%	Νο	12	10.9%
TYPHOON	712	22	59	Cypher	26%	72%	50%	Νο	12	10.9%
SESAMI	320	19	61	Cypher	52%	NA	50%	18%	12	11.8%
HAAMU- Stent	164	28	63	Taxus Express	88%	100%	44%	45%	12	15.2%
MISSION	316	22	59	Cypher	82%	100%	55%	Νο	12	18.6%

Pasceri, V. Am Heart A20007;4533:549:674.TCT Asia Soeul April 2009

Primary Efficacy Endpoint: Ischemic TLR

Primary Safety Endpoint: Safety MACE*

* Safety MACE = death, reinfarction, stroke, or stent thrombosis

Stent Thrombosis (ARC Definite or Probable)

Where to next?

XIENCE Prime

- Built upon the XIENCE V body of clinical evidence
- Proven drug and polymer from XIENCE V
- Outstanding Acute Performance
 - New stent delivery system for more responsive catheter performance
 - Enhanced stent design** with connecting link and ring geometry for improved deliverability and conformability
 - Short balloon tapers for safe deployment
 - Higher RBP for confident placement
- Full matrix of lengths and diameters
 - 46 sizes vs. 36 for XIENCE V

Tests performed by and data on file at Abbott Vascular.

A Commitment to Innovation Redesigned Stent Delivery System

XIENCE V

XIENCE PRIME

Photographs taken by and on file at Abbott Vascular

The SDS is completely redesigned

Feature

- Redesigned SDS Increased chassis pushabilit
- Shorter balloon tapers
- Higher Rated Burst Pressure
- Softer tip flexibility
- Significantly lower deflation times

<u>Benefit</u>

- Increased pushability and catheter response
- Reduced peri-stent injury
- Permits higher pressure deployment
- Easier lesion access
- Faster procedure times

A Commitment to Innovation Goal: More Available Sizes Than XIENCE V

XIENCE V

 <u>Continuous Sizes:</u>
 2.25 – 4.0 mm diameter
 8 – 28 mm lengths

<u>Differences:</u> Longer lengths with XIENCE PRIME (33, 38)

Evolution of Stent Based Drug Delivery

Future Steps Fully Bioabsorbable Stent Design

- More uniform strut distribution
- More even support of arterial wall
- Lower MCUSA (maximum circular unsupported surface area)
- Lower late stent area loss
- Higher radial strength
- Improved stent retention
- Unchanged:
 - Material
 - Strut thickness

Conclusions

- The current generations of DES address some but not all of the DES design issues.
- Overall the programs are characterised by a move to lower profile more flexible stent platforms with lower strut and polymer thickness and potentially more biocompatible polymers.
- The body of comparative data between programs remains small but is expanding.
- Choosing a DES platform in this multi-platiform environment requires the adaptation and translation of the available evidence to patient, vessel, lesion characteristics and the overall clinical setting.

