

Drug Eluting Stents

- High benefit in preventing restenosis and improving quality of life
- **✓ The benefits outweigh potential risks**
- ✓ All DES are not the same
 - There are differences in:
 - platforms,
 - polymers,
 - drugs,
 - elution profiles

Components of DES System **Mechanical integrity Carrier Matrix Stent** - Drug Carrier compatibility **Mechanical** - Loading **Scaffolding** capacity Drug - Release **Delivery kinetics** Tissue Drug **Tissue Pharmacokinetics**

Nobori DES components

Highly Flexible BMS Platform

Easy Side Branch Access Optimal Vessel Scaffolding Uniform Drug Distribution

Polymer - PLA Biodegradable

Coating

Only abluminal for optimal endothelialization

Nobori DES

<u>Drug – Biolimus A9</u>

Highly Lipophilic
Antiproliferative
Low systemic level
Optimal release kinetics

Delivery Catheter

With Proprietary Hydrophilic Coating – for enhanced deliverability

Nobori™

Nobori DES Drug Release vs Polymer Degradation

Design Hypothesis

- Biodegradable polymer
 - Controlled Drug release kinetics
 - Long term safety
- Abluminal coating
 - Optimal drug uptake minimal systemic concentration
 - Enhanced endothelialization
- → Drug from limus family
 - High efficacy

Design Supported by Extensive Clinical Programs

In all Nobori trials treatment of more allowed vessel was than one

NOBORI PK – 20 Patients

NOBORI 1 – 363 patients

NOBORI CORE – 107 patients

NOBORI CORE endothelial study 43 patients

NOBORI Japan – 340 patients

NOBORI 2 – 3000 patients

COMPARE II 2700 patients

700 patients

SECURITY 4000 patients

BASKET PROVE 2300 patients

Confirmation of pharmacokinetics
Nobori DES

Nobori DES Randomized versus Taxus (surrogate endpoint-LL) Nobori DES similarity versus Cypher (surrogate endpoint-LL)

Comparison endothelial function at 9 months Nobori vs Cypher

Nobori DES Randomized versus Cypher (clinical endpoint-TVF)

Real life registry

Randomized vs Xience V in all Comers population

Randomized vs Xience V in Patients with STEMI

Randomized 6 vs 12 m DAT New generation DES

Randomized 3 arms study BMS vs Xience V vs Nobori

Nobor

NOBORI Pharmacokinetics Study

						,	TIM	E PC	INI	TS.						
Trial	Sample	Pre-	Pre- Mins / Hours / Days / Months													
21101	Size (n)	Proce- dure	2	15	30	1	2	3	8	24	48	72	7	28	3	6
Nobori PK Study	20	√	√	√	√	√	√	√	√	√	√	√	√	√	>	√

Biochemistry/Haematology Blood Collection Time Points

* t=0 defined as deployment balloon inflation/ stent implantation

Pharmacokinetics

Maximum blood concentration of Biolimus A9 is 52 times LOWER than Sirolimus and 87 times lower than Everolimus

Systemic concentration of drugs (ng/mL) eluted from different DES

	Biolimus ¹ A9	Sirolimus ²	Everolimus ³
Mean	0,020	0,80	NR
SD	0,007	0,37	NR
Minimum*	0,010	0,43	0,14
Maximum	0,032	1,66	2.79
n	20	19	37

NR= Not reported

1= Ostojic et al. CCI 2008 2=Vetrovec et al. CCI 2006 3=Wiemer et al. AHJ 2008

NOBORI 1

Nobori

Primary Endpoint Result

- Assumed in-stent Late Loss (LL)
 - ✓ 0.39 mm for Taxus® / 0.34 mm Nobori
 - ✓ Assumed SD: 0.50 mm
- Delta non-inferiority margin: 0.20mm

Late Loss result

- \checkmark 0.33 \pm 0.51 mm Taxus[®]
- ✓ 0.11 ± 0.30 mm Nobori

Result:

Nobori = NON-INFERIOR p<0.001

Nobori = SUPERIOR*

p=0.001

*The SUPERIORITY was a secondary objective

Key Angiographic Results

Intravascular Ultrasound Results

IVUS	Nobori N =101	Taxus N =53	P value
Volume obstruction (%)	1.93±5.54	6.76±8.04	<0.001
Neointimal hyperplasia (mm3)	3.11±8.84	13.50±20.4	0.003
Mean plaque area (mm2)	0.15±0.48	0.52±0.64	<0.001

Nobori

Stent Thrombosis up to 2 years in NOBORI 1

Stent thrombosis Per Protocol

	Nobori Stent N=238	Taxus Stent N=125
Acute	0.0	2.4
Subacute	0.0	1.6
Late	0.0	0.8
Total up to 1 year	0.0	3.2
Total up to 2 years**	0.0	4.0

Definite and Probable Stent Thrombosis According to ARC*

	Nobori Stent N=238	Taxus Stent N=125
Early	0.0	1.6
Late	0.0	0.0
Very Late	0.0	8.0
Definite and probable	0.0	2.4
Total up to 2 years	0.0	2.4

Dual Antiplatelet	Two Years
	Nobori = 25%
	Taxus = 23%

NOBORI CORE Study Design

Secondary endpoints: Endothelial functionality, MACE (Death, MI, TVR) TLR, TVF at 9 months and restenosis at 9 months, Procedure, Lesion success

QCA Findings at 9 Months

	Nobori 72 Lesions	Cypher 74 Lesions	P Value
RVD (mm) MLD – stent (mm) MLD – lesion (mm) DS (%) Late loss – stent (mm) Late loss – lesion (mm)	3.00 ± 0.36 2.59 ± 0.42 2.27 ± 0.48 13 ± 10 0.10 ± 0.26 0.12 ± 0.35	2.84 ± 0.40 2.28 ± 0.49 2.13 ± 0.48 20 ± 12 0.12 ± 0.43 0.18 ± 0.40	0.09 <0.001 0.15 0.001 0.70 0.43
Binary Restenosis %	1.7 (1/60)	4.2 (2/48)	0.18

Protocol of atrial pacing for Endothelial Function Assessment

METHODS

- 1. Baseline conditions were established and angiography performed
- 2. Rapid Atrial pacing with 20 bpm higher than baseline for 2 min
- 3. Angiographic images acquisition followed by 2 minutes rest
- 4. Repeat procedure with increasing pacing rate by 20 bpm up to 150
- 5. Intra-arterial nitroglycerin injection
- 6. Angiographic image acquisition
- 7. Off line QCA analysis of proximal, in-stent, distal segments and reference vessel

Preserved endothelial function after NOBORI DES implantation

Different endothelium dependent vasomotion with different stents

- Paradoxycal vasoconstriction with first generation DES
- Normal vasodilatation with second generation DES and BMS

Possible Explanations

- Possible explanations for different impact on endothelial function could be :
 - Different Healing process and Endothelialization after stent implantation
 - Different Polymer
 - Permanent versus Biodegradable
 - Different Coating Method
 - Circumpherential versus Asymetric and Abluminal
 - Different Drug
 - Mechanism of action, dose, release kinetics
 - Clinical relevance of those findings is still undetermined and requires further, specifically designed studies

MACE Rate in NOBORI Trials – Sustained Low MACE Rate Over Time

MACE = Cardiac Death, Myocardial Infarction, Clinically Driven TLR

Key Angiographic Findings in all NOBORI Trials

	NOBORI 1 Phase 1 N=120			II CORE 107	NOBORI Phase 2 N=243		
	Nobori	Taxus	Nobori	Cypher	Nobori	Taxus	
Follow-up	9 months		9 months		9 months		
Late loss mm	0.15±0.27	0.33±0.34	0.10±0.26	0.12±0.43	0.11±0.30	0.32±0.50	
Diameter stenosis	14±8	19±10	13±10	20±12	14±8	21±15	
Restenosis - stent	0.0%	0.0%	1.7%	6.3%	0.7%	6.2%	
Restenosis - lesion	0.0%	0.0%	3.3%	6.3%	0.7%	6.2%	
TLR	0.0%	2.9	0.0%	4.1%	0.0%	1.1%	

Sugroup Analysis (QCA) In-Stent Late Loss (mm)

Subgroup Analysis IVUS - Mean Plaque Area (mm²)

Hamilos et al JACC 2008 Hamilos et al Circulation Cl 2008

DES Efficacy Clinically Driven TLR Rate in DES Pivotal Trials

*Nobori 2 years N=85

Holmes et al Circulation 2004; Stone et al Circulation 2004; Leon – ACC 2004; Stone, TCT 2004; Fajadet, Circulation 2006; Fajadet PCR-2006; Chevalier et al; Eurointervention 2007; PCR 2008

Nobori™

DES Safety Stent Thrombosis in Pivotal Trials

Holmes et al Circulation 2004; Stone et al Circulation 2004; Leon – ACC 2004; Stone, TCT 2004; Fajadet, Circulation 2006; Fajadet PCR-2006; Chevalier et al; Eurointervention 2007; PCR 2008

NOBORI 2 Study Design

Patients with Coronary Artery Disease
Vessel Diameters: ≥2. 5 - ≤3.5 mm
All consecutive patients treated with DES
3000 patients (150 centers Europe, Asia, Africa)

Patients per Subgroups

Female, n (%)	674 (22.0)
Diabetics	885 (28.9)
Acute Myocardial Infarction	692 (25.4)
Small vessels (<2.7 mm)	1106 (32.0)
Long lesions (>24mm)	822 (26.8)
Overlapping	578 (18.8)
CTO	357 (11.6)
Bifurcation	558 (18.2)
Restenosis	232 (7.6)

One patient could be assigned to more than one subgroup

Procedure Characteristics

	Total N=3072
Number of diseased vessels/patient (n)	1.8
Lesions per patient (n)	2.0
Lesion treated per patient (n)	1.40
Stents per patient (n)	1.7
RVD (mm ±SD)*	2.73 ±0.4
Lesion length (mm ±SD)*	18.2 ±10.3
Diameter Stenosis before (%)*	84 ± 13

Procedure Characteristics

Values presented as percentage	Total N=3072 patients N=4.300 lesions
Pre-Dilatation	72.4
Post-dilatation	33.9
Side branch event	4.0
Dissection	2.5
Device success	98.8
Procedure success	98.7

MACE Rate In-Hospital

All events ***	Total N=3072
Cardiac Death (N, %)	2 (0.06)
MI	30 (1.0)
TL CABG	0 (0.0)
TL Re-PCI	5 (0.2)
Bleeding and vascular complication	21 (0.7)
Events all	37 (1.3)

MACE = Cardiac death, MI, clinically driven TLR **20% of the patients monitored on-site and 80% on-line Nobori ***Events are not yet adjudicated

MACE Rate Between Discharge and 1m FU

All events *	Total N=2666
Cardiac Death (N, %)	5 (0.2)
MI	4 (0.2)
TL CABG	2 (0.07)
Re-PCI	13 (0.5)
Total Events	24 (0.9)

Events are not yet adjudicated 20% of the patients monitored on-site and 80% on-line

CONCLUSIONS - Nobori new generation DES

Nobori DES incorporates several innovative design characteristics which proved valuable through the results of clinical trials

Nobori stent showed non-inferiority vs Taxus and Cypher DES with respect to late loss, and other angiographic and IVUS parameters

Endothelial function showed better recovery in Nobori- than in Cypher or Taxus - treated vessels at 9m

⇒ could be related to drug, drug release kinetics, biodegradable polymer or abluminal coating

The clinical evidence available to date for Nobori stent shows excellent safety and efficacy confirmed by:

- Very low rate of MACE, Restenosis and TLR
- No late stent thrombosis
- Long term follow-up results awaited to confirm current trends and to further explore the potential positive impact of biodegradable polymer on long term safety of this innovative DES
- Initial results of NOBORI 2 in 'real-life' setting tend to confirm preliminary findings

