Endeavor Resolute A New Generation DES

lan T. Meredith

MBBS, Ph.D, FRACP, FACC, FCSANZ, FSCAI, FAPSIC, FAHA Director of MonashHEART Southern Health Professor of Cardiology, Monash University Melbourne, Australia

Unmet Clinical Needs in DES Era

Diabetic vascular disease

- (Colombo et al AJC, 2006)

Diffuse/Multi vessel disease

- (Colombo et al TCT 2005)

Chronic renal failure

- (Waksman et al CCI, 2006)

Chronic Total Occlusions

- (Abbas et al AJC, 2005)

Left Main/Ostial disease

- (Tierstein et al ACC 2006)

Unmet Clinical Needs in the DES era

TLR and MACE rates remain high in patients at the highest clinical risk of TLR

Diabetics

20% MACE @ 2 yr – STENT Group Database, *Stuckey, PCR 2008* 23.2% TLR @ 5 yr – Diabetes-where are we?, *Banning, PCR 2008*

Small Vessels

12.8% MACE @ 9 mo – TAXUS ATLAS Small Vessel – Turco, TCT 2007

Multi-Vessel Disease

17.6% MACCE @ 3 yr – Long Term Follow Up After Multivessel DES, *Bruyne, TCT 2007*13.8% TLR @ 8 mo— What's Now: Cypher, Moses, *DES Summit 2008*

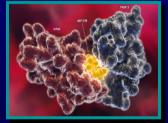
RESOLUTE Study Objectives


- Improve clinical outcomes in more complex lesions
- Maintain current safety profile seen with Endeavor DES

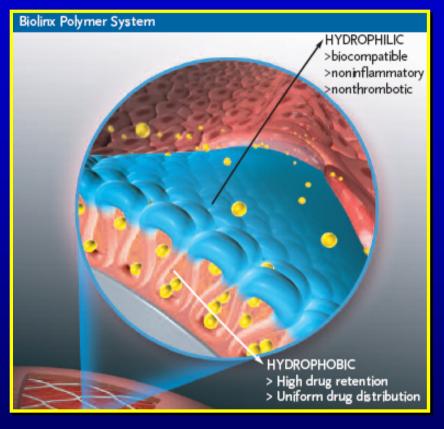
By

- Extending the drug elution to match the potentially delayed healing times of complex lesions
- Combat the sustained stimulus to the proliferative response

Endeavor RESOLUTE Drug Eluting Stent System


Retains three components of the Endeavor Coronary Stent System

Driver Cobalt Chromium Stent


Endeavor Delivery System

Zotarolimus Antiproliferative Drug

Endeavor RESOLUTE

BioLinx Polymer

Components of a safe polymer:

- Mimics the body's chemistry
- Allows reliable drug elution
- Compatible with stent delivery

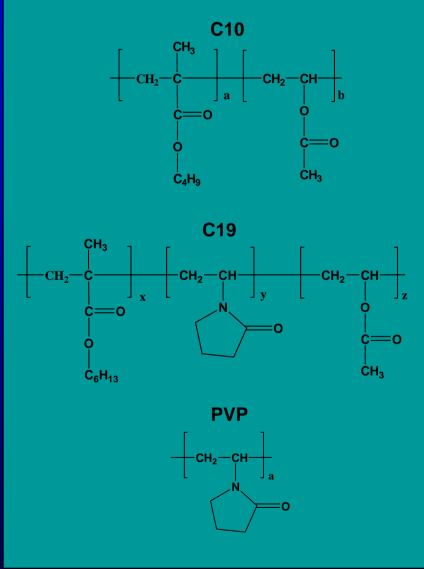
Biocompatible BioLinx polymer system design:

- Non-inflammatory and non-thrombotic
- Rapid and functional endothelial healing

A biostable polymer that applies the basics of membrane structure will provide sustained drug elution over time while maintaining biocompatibility

The BioLinx Polymer System

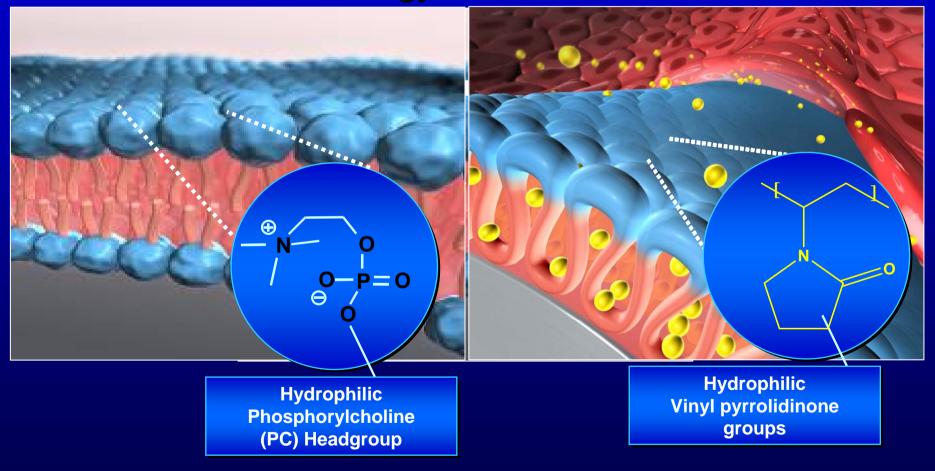
C10 Polymer


Based primarily on hydrophobic butyl methacrylate to provide adequate hydrophobicity for zotarolimus

C19 polymer

Manufactured from a mixture of hydrophobic hexyl methacrylate and hydrophilic vinyl pyrrolidinone and vinyl acetate to provide enhanced biocompatibility

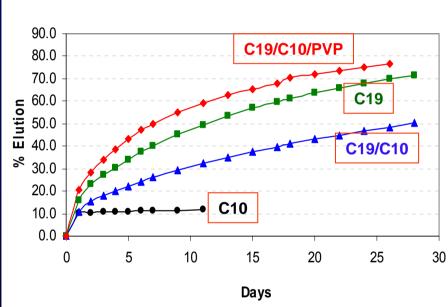
Polyvinyl pyrrolidinone (PVP)


Hydrophilic polymer increases initial drug burst and enhances biocompatibility

Medtronic Polymer Technologies PC and BioLinx Polymers

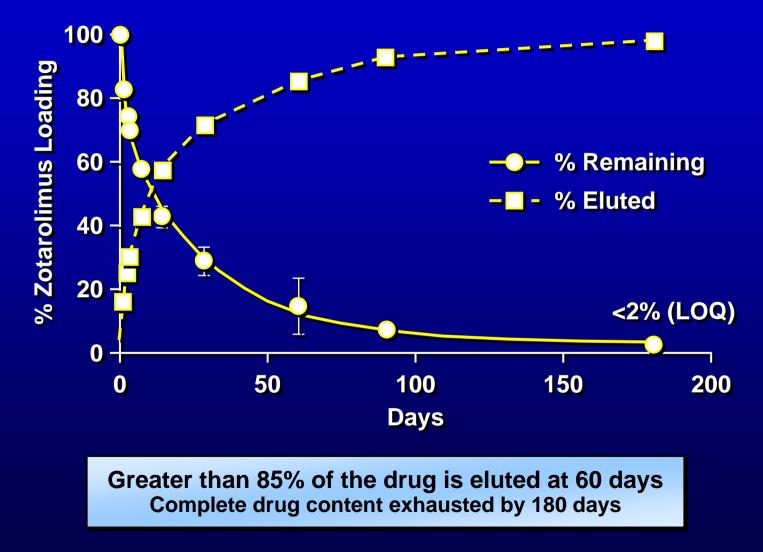
Endeavor: PC Technology

Endeavor Resolute: **BioLinx**

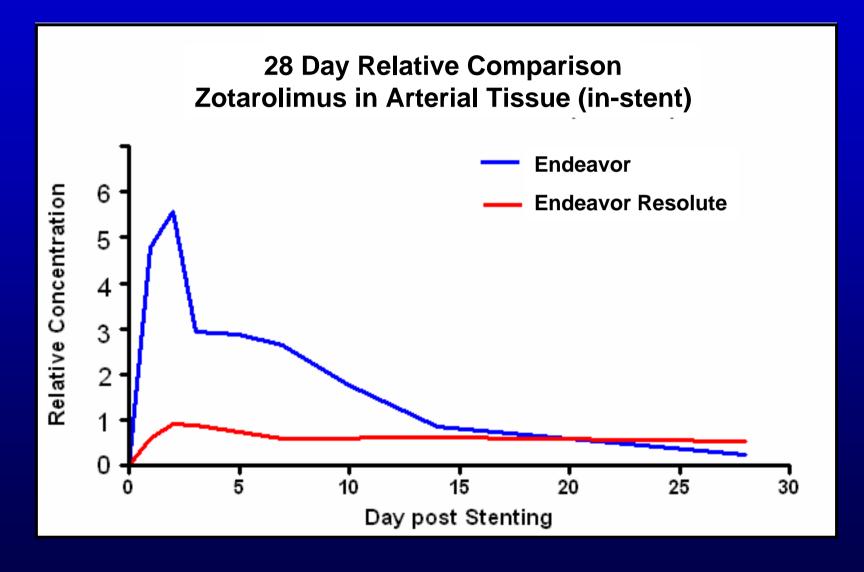


Both PC and BioLinx mimic the body's chemistry and are biocompatible.

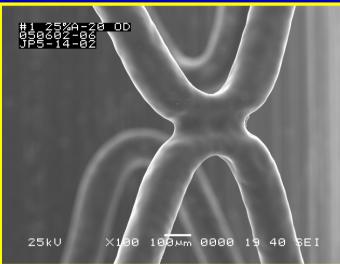
Drug Elution Control


- C10 polymer is lipophilic/hydrophobic and aids in control of drug release, alone it locks in the drug
- C19 polymer is primarily hydrophilic making it more biocompatible and aids in drug elution
- PVP is hydrophilic, increases the initial drug burst and enhances the elution rate

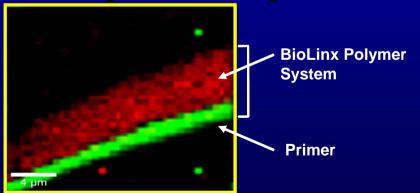
Zotarolimus Elution Profiles


Encleavor RESOLUTE BioLinx Polymer in vivo Elution

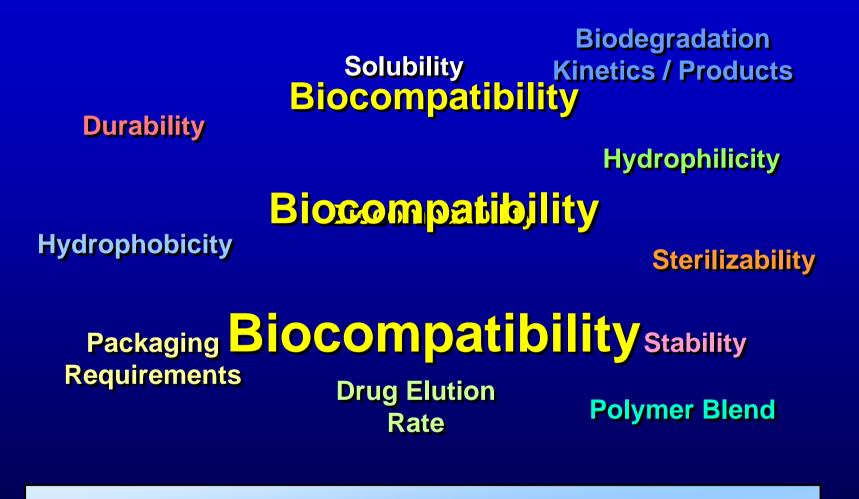
Carter et al TCT 2006


Endeavor Resolute

In-Vivo Tissue Concentration vs Endeavor


BioLinx Designed as Robust & Durable

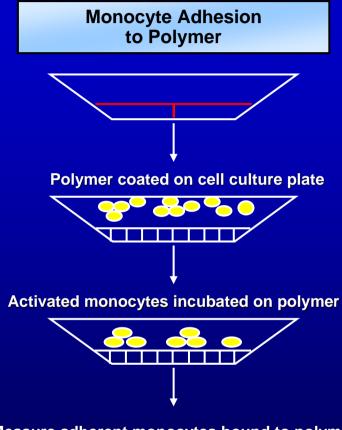
BioLinx Polymer System provides a durable & robust coa


A deployed stent after tracking 3 times in a 5 Fr guide catheter*

The stent surface is primed to improve adhesion of the BioLinx Polymer System

Atomic Force Microscopy (AFM) studies indicate that the interface between the BioLinx Polymer System and the primer is very strong*

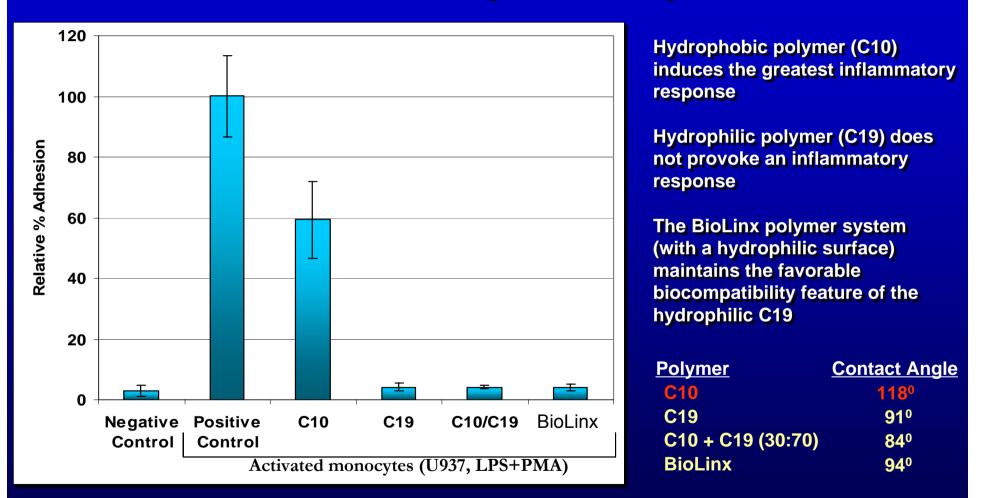
Polymer Performance Requirements



Biocompatible Polymer -> Product Safety

Polymer Biocompatibility

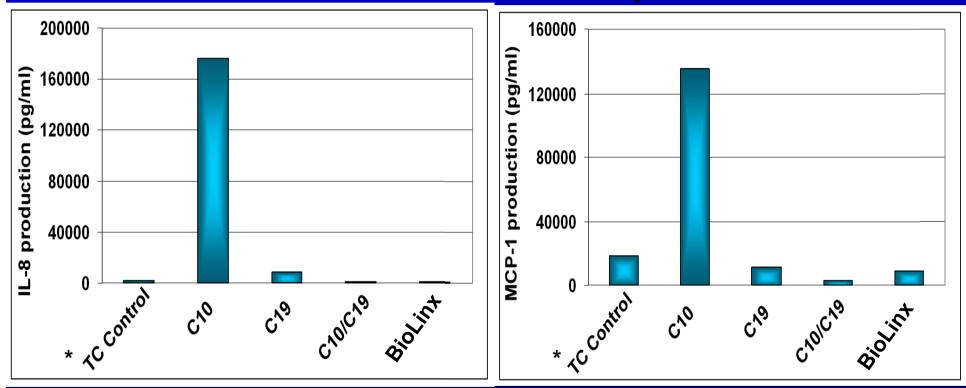
 An ideal polymer would not provoke an inflammatory response such as monocyte binding and the release of chemotactic factors and cytokines.


Inflammatory Profiling of Polymer Coatings

Measure adherent monocytes bound to polymer

- Neutrophil-platelet and monocyteplatelet aggregates have been identified in the peripheral blood of patients with coronary artery disease and may be markers of disease activity.^{1,2}
- Numerous human histopathological studies in which leukocytes, mainly of the monocyte lineage, have been identified at all stages of development of the atherosclerotic plaque, from fatty streaks to mature atheroma.³
- 1. Ott I, Neumann FJ, Gawaz M, Schmitt M, Schomig A. Increased neutrophil-platelet adhesion in patients with unstable angina. *Circulation*. 1996;94:1239–1246.
- 2. Furman MI, Benoit SE, Barnard MR, Valeri CR, Borbone ML, Becker RC, Hechtman HB, Michelson AD. Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease. *J Am Coll Cardiol*. 1998;31:352–358.
- 3. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999;340:115–126.

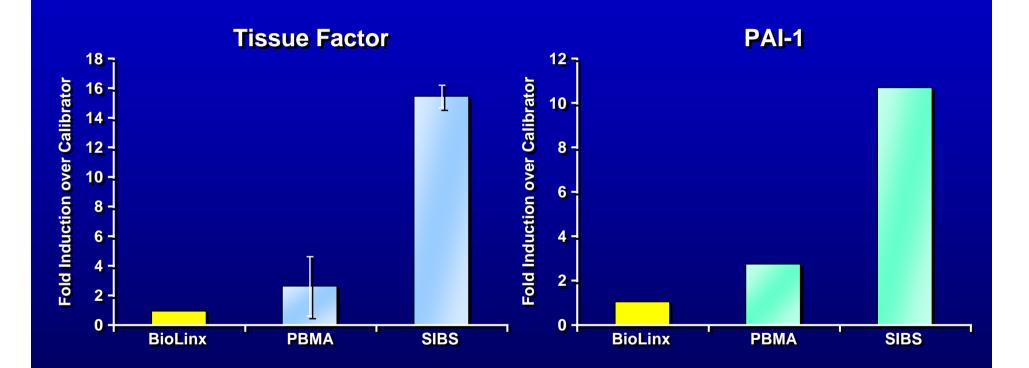
Reduced Monocytic Adhesion to BioLinx Polymer System



Activated monocytes do not bind to polymer blends containing C19

Cytokine Production by Monocytes

Interleukin-8


Monocyte Chemoattractant-1

Monocytes cultured on polymer blends containing the hydrophilic C19 release low levels of inflammatory cytokines into the cell culture media

* TC= Tissue Culture Polystyrene

Polymer Induced Up-Regulation of Prothrombotic Genes In Vitro

The BioLinx Polymer System does not exhibit increased induction of the prothrombotic genes Tissue Factor and PAI-1. Conversely, competitive DES polymers greatly induce the expression of these prothrombotic genes.

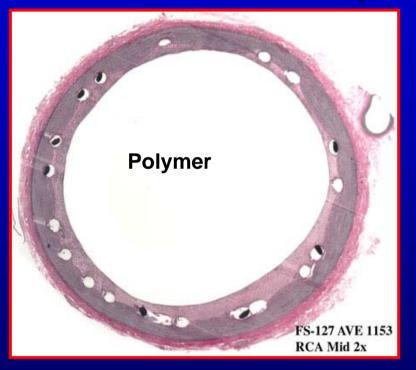
PBMA: Polybutyl methacrylate [Cypher cap coat] SIBS: Styrene-Isobutylene-Styrene Triblock Copolymer [Taxus]

Endeavor Resolute In Vivo

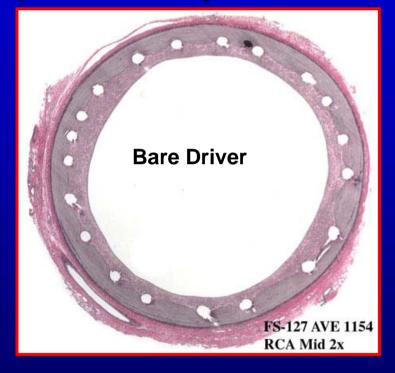
What is an Inflammation Score?

Absent

Severity of Inflammation

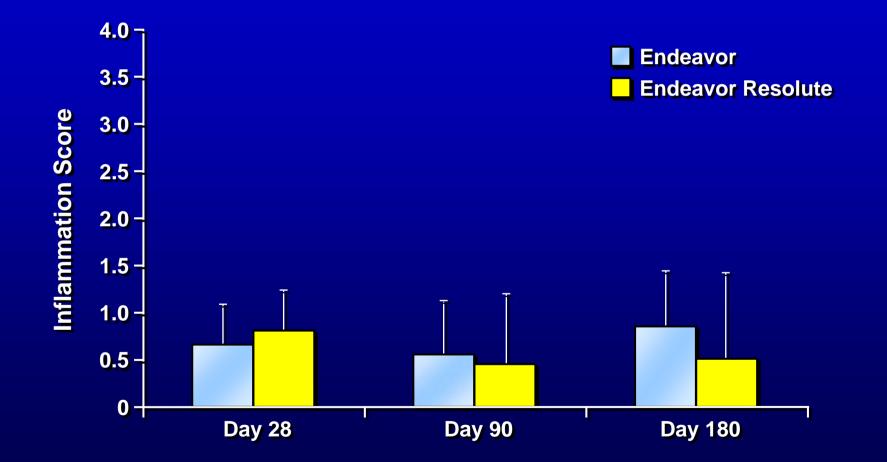

	U	3 or fewer struts with 10 or fewer inflammatory cells surrounding the struts
	1	3 to 6 struts with 10 or fewer inflammatory cells surrounding the struts
	2	Greater than 6 but less than 50% of the struts with 10 or fewer inflammatory cells surrounding the struts
S	3 evere	Greater than 10 inflammatory cells surrounding 50% or more struts

An inflammation score of 1 or less is highly desirable


Schwartz RS, et al. Preclinical evaluation of drug-eluting stents for peripheral applications: recommendations from an expert consensus group. Circulation 2004:110: 2498-2505mmit TCT Asia, Seoul, April 2009

Biocompatibility of the BioLinx Polymer

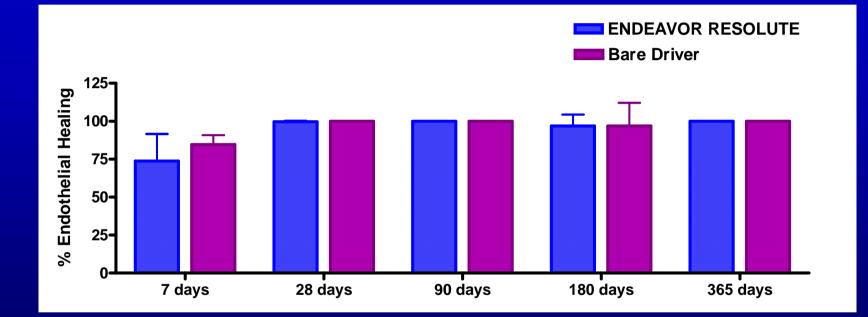
Porcine coronary artery implants at 28 days


Inflammation score 0.10 \pm 0.21

Inflammation score 0.11 \pm 0.38

Both BioLinx coated and bare metal Driver stents had low inflammatory scores

Equivalent Biocompatibility to Endeavor


Carter, A, In Vivo Performance of a Novel Co-polymer System for Extended Release of Zotarolimus in a Next Generation Drug Eluting Stent **TCT 2006**

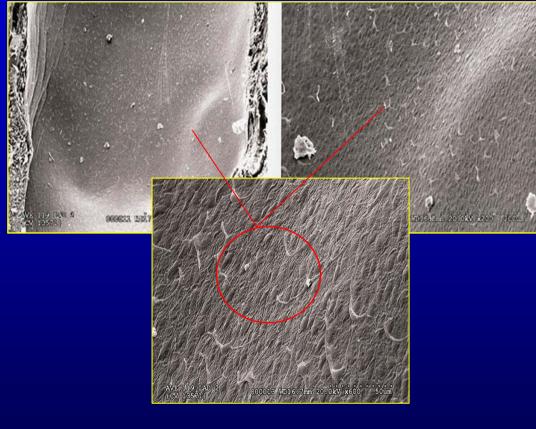
Biocompatibility of the BioLinx Polymer

lmplant Group	% Struts with Fibrin	Fibrin Score	% Endothelial coverage	% Struts with Granuloma	% Struts with Giant Cells	% Struts with RBCs	Mean Inflamm Score
BioLin x Poly n=13	42.51±18.1	0.82±0.4	100.00±0.0	0.00±0.00	17.91±9.70	2.43±3.08	0.10±0.21
Bare Contro I n=12	34.58±18.6	0.67±0.4	100.00±0.0	0.29±1.01	17.70±9.99	3.77±7.70	0.11±0.38
p- value	0.29	0.30	n/a	0.31	0.96	0.57	0.95

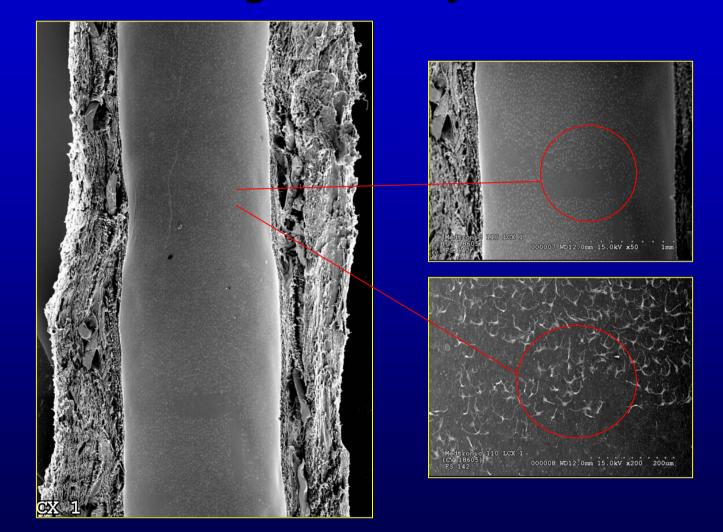
No significant difference in inflammatory responses between BioLinx polymer coated stents and Driver

Endeavor Resolute Endothelial Healing Complete endothelialization present after 28 days

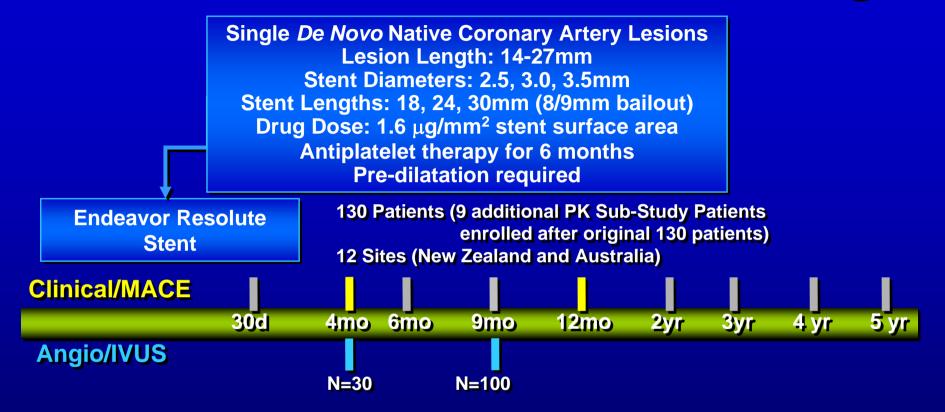



Full endothelialization achieved by 28 days with no aneurysms, incomplete apposition, medial necrosis, late thrombosis or filling defects

Endeavor Resolute Endothelial Healing SEM Analysis


28 day Small Vessel Safety Study (FS144)

180 day Safety Study (FS129)



Endeavor Resolute Endothelial Healing at 365 Days

Sequential SEM views showing confluent endothelialization of the luminal surface at 365 days. Summit TCT Asia, Seoul, April 2009

RESOLUTE Clinical Trial Design

Primary Endpoint: Late lumen loss (in-stent) at 9 mths by QCA Secondary Endpoints: MACE at 30 days, 6, 9 and 12mths and IVUS and angiographic parameters at 9mths

30 pt Subset: 4mth MACE and angiographic, IVUS parameters*

*Meredith et al: EuroInterv 2007; 3:50-53

Resolute Investigational Centres

Investigator

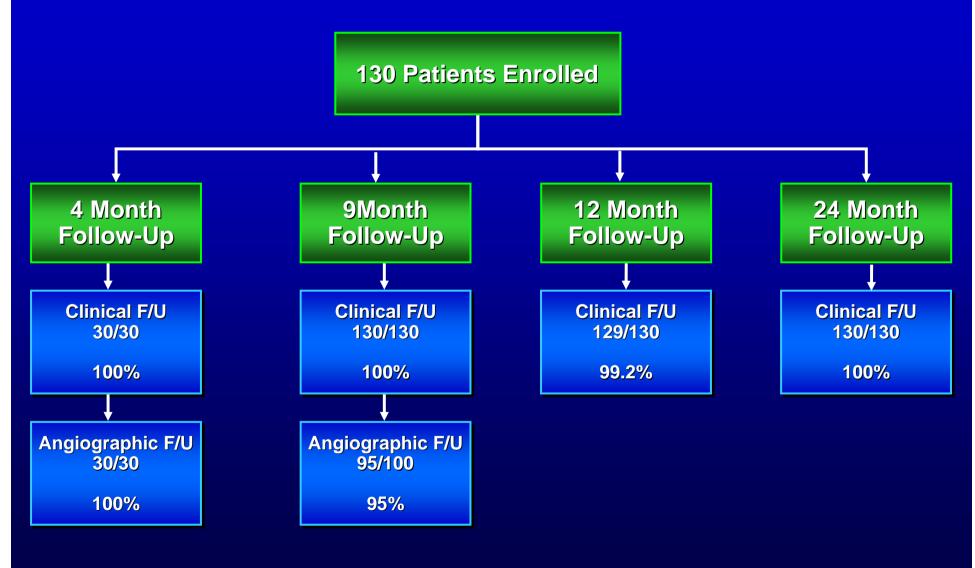
Prof. Ian Meredith * **Prof. Stephen Worthley Dr. Rob Whitbourn Dr. Darren Walters Dr. Dougal McClean Dr. Mark Horrigan Dr. John Ormiston Dr. Gerry Wilkins Dr. Randall Hendriks Dr.** Phillip Matsis **Dr. John Ormiston** A/Prof. David Muller

nstitut	ion	

Monash Medical Centre	<u>25</u>
Royal Adelaide Hospital	17
St. Vincent's Hospital (Melbourne)	13
Prince Charles Hospital	13
Christchurch Hospital	12
Austin Health Medical Center	12
Auckland City Hospital	8
Dunedin Hospital	8
Fremantle Hospital	7
Nellington Hospital	7
Mercy Hospital	4
St. Vincent's Hospital (Sydney)	4

* Study Principal Investigator

n


QCA Core Lab Brigham and Women's Hospital, Boston, MA, USA Jeffrey J. Popma, MD

IVUS Core Lab Cardiovascular Core Analysis Lab Stanford Interventional Cardiology, CA, USA Peter Fitzgerald, MD

Data Coordinating Center Harvard Clinical Research Institute, Boston, MA, USA Donald Cutlip, MD, MSc

Clinical Events Committee/DSMB Harvard Clinical Research Institute, Boston, MA, USA Donald Cutlip, MD

Endeavor Resolute Patient Flowchart

Endeavor RESOLUTE Patient Demographics

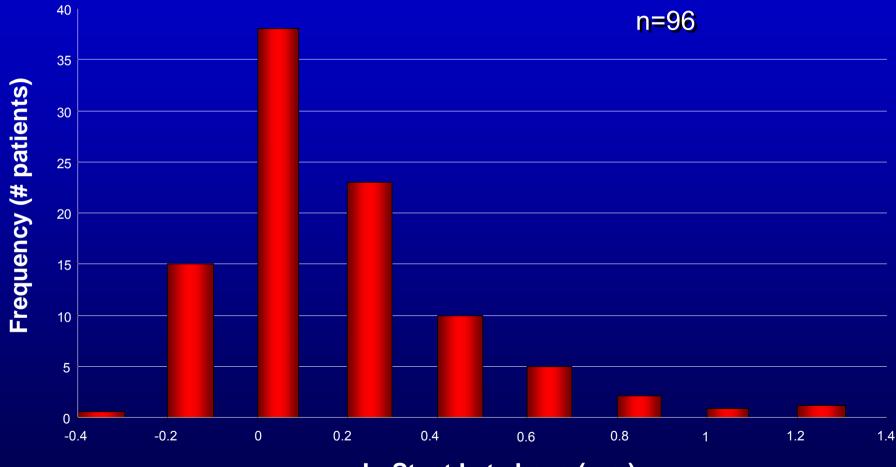
n =130 Male (98/130)75.4% 61 <u>+10yrs</u> Age (130)Prior MI 45.7% (59/129)**Prior PCI** 18.5% (24/130)**Diabetes Mellitus** 17.7% (23/130)Insulin Dependent 2.3% (3/130)**Unstable Angina** 29.7% (38/128)Hyperlipidemia 94.6% (123/130)Current Smoker – within last 30 days (29/130)22.3%

Endeavor RESOLUTE Procedural Characteristics

N=130 patients, 131 lesions

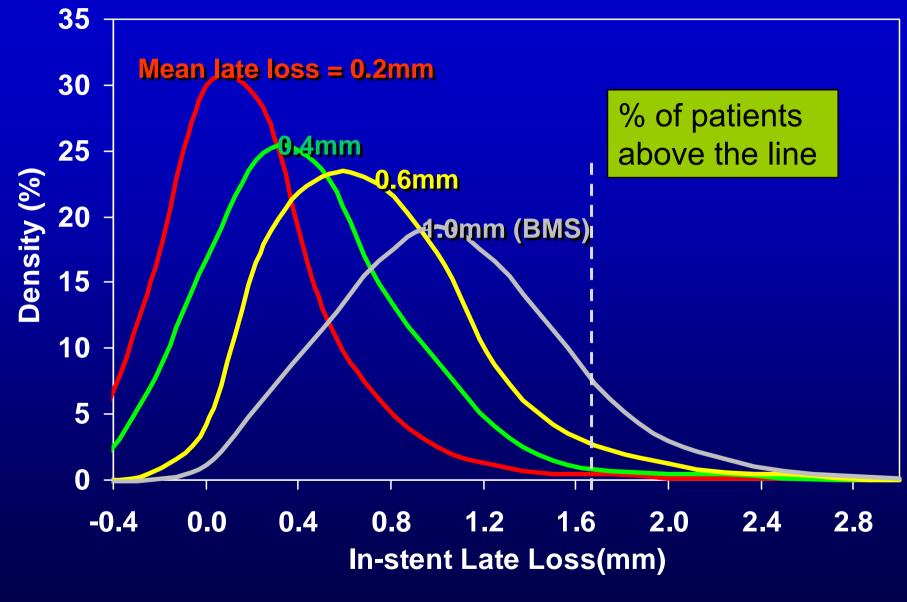
LAD (%)	34.4% (45/131)		
B2/C Lesions (%)	81.7% (107/131)		
Pre-procedure RVD (mm)	2.81 ± 0.41		
Lesion Length (mm)	15.49 ± 6.23		
Pre-procedure MLD (mm)	0.82 ± 0.34		
Pre-procedure DS (%)	70.50 ± 11.42		
Device success	99.2% (130/131)		
Procedure success	96.2% (125/130)		

Device success Procedure success <50% residual in-stent % ds with assigned stent <50% residual in-stent % ds & without in-hospital MACE


*Meredith et al: EuroInterv 2007; 3:50-53

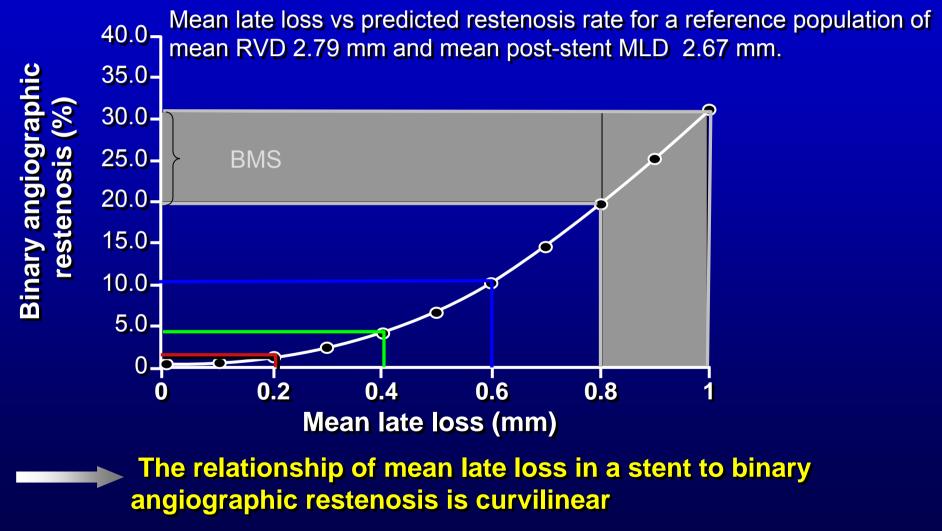
Endeavor RESOLUTE Angio, IVUS and Clinical 4 Month Subset

Angio/IVUS	In-stent	ⁿ⁼³⁰ In-segment
Late Loss (mm)	$0.12 {\pm} 0.26$	0.05±0.20
% DS	7.18 ± 7.86	17.74 ± 7.57
ABR (%)	0	0
Neointimal Volume		3.72 <u>+</u> 4.21 mm ³
Neointimal Volume %		2.23 ± 2.43 (24)
clinical		
MACE (%)	3.3	3 (1/30)
Non Q-Wave MI	3.3	3 (1/30)


Endeavor RESOLUTE				
9 month Angiographic Results				
n=96	In-stent	In-segment		
Pre-procedure RVD (mm)		2.79 ± 0.40		
Lesion Length (mm)		15.87 ± 6.51		
MLD (mm) pre		0.82 ± 0.35		
post	2.74 ± 0.41	2.33 ± 0.44		
Acute Gain	1.91 ± 0.47	1.51 ± 0.50		
<mark>9 mo f/u</mark> MLD (mm)	2.51 ± 0.48	2.21 ± 0.45		
Late Loss (mm)	0.22 ± 0.27	0.12 ± 0.27		
Late Loss Index	0.12 ± 0.16	0.08 ± 0.21		
<mark>9 mo f/u</mark> % DS	10.13 ± 12.63	21.08 ± 10.62		
ABR n (%)				

Endeavor RESOLUTE 9 Month Late Loss Distribution

In-Stent Late Loss (mm)

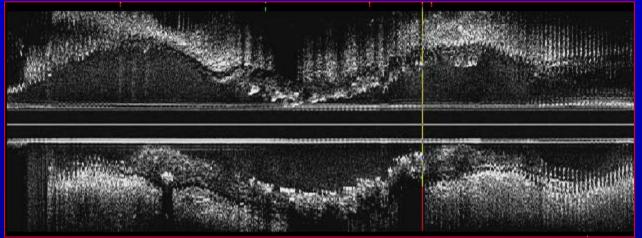

Late Loss Distribution

Mauri L, Kuntz R Circulation (2005, 111:3435-3442).

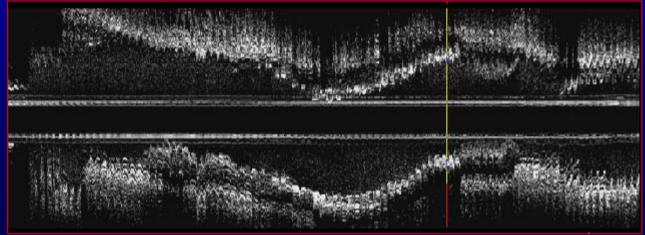
Relationship between LLL & ABR

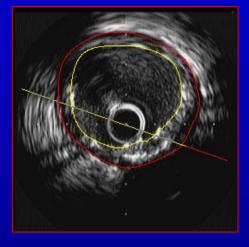
Generalized Model of Binary Angiographic Restenosis versus mean DES Late Loss

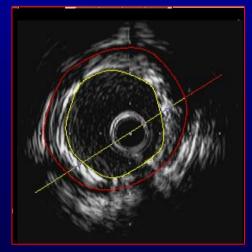
Mauri et al. Circulation. 2005;111:3435.

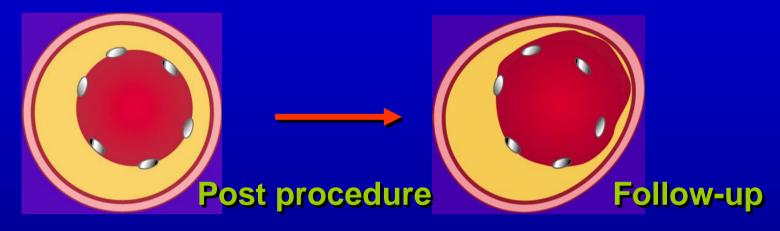

Endeavor RESOLUTE 9 month Angiographic Results			
n=96	In-stent	In-segment	
Pre-procedure RVD (mm)		2.79 ± 0.40	
Lesion Length (mm)		15.87 ± 6.51	
MLD (mm) pre		0.82 ± 0.35	
post	2.74 ± 0.41	2.33 ± 0.44	
Acute Gain	1.91 ± 0.47	1.51 ± 0.50	
<mark>9 mo f/u</mark> MLD (mm)	2.51 ± 0.48	2.21 ± 0.45	
Late Loss (mm)	0.22 ± 0.27	0.12 ± 0.27	
Late Loss Index	0.12 ± 0.16	0.08 ± 0.21	
<mark>9 mo f/u</mark> % DS	10.13 ± 12.63	21.08 ± 10.62	
ABR n (%)	1 (1%)	2 (2.1%)	

Endeavor RESOLUTE 9 month IVUS Volumetric Analysis


	Post Procedure	Follow up	p value
EEM Volume (mm ³)	330.6 ± 112.3 (69)	332.5 ± 114.3 (68)	0.923
Stent Volume (mm ³)	168.8 ± 57.3 (89)	169.2 ± 57.4 (88)	0.957
NIH Volume (mm ³)	0.6 ± 1.4 (89)	6.6 ± 7.8 (88)	<.001
Volume Obstruction (%)	NA	3.7 ± 4.0 (88)	NA
Minimal Luminal Area (mm ³)	6.4 ± 1.8 (98)	6.1 ± 1.8 (91)	0.231

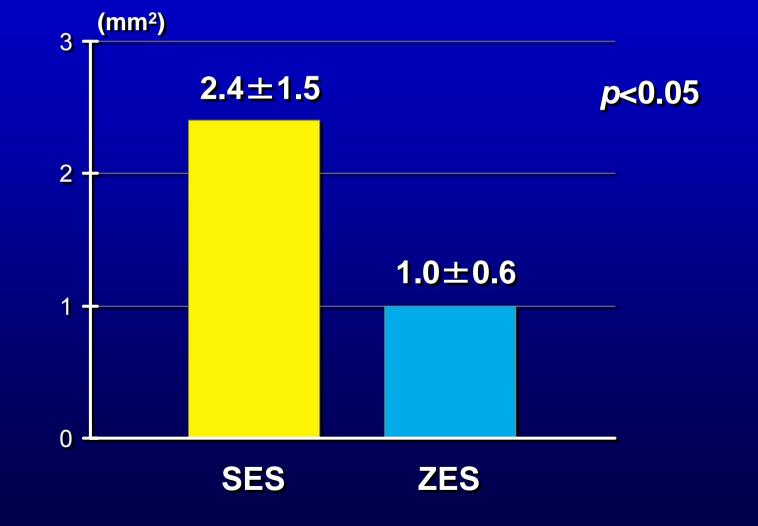

RESOLUTE Case 6602 021 LAD 3.5x18 mm


Post Stent

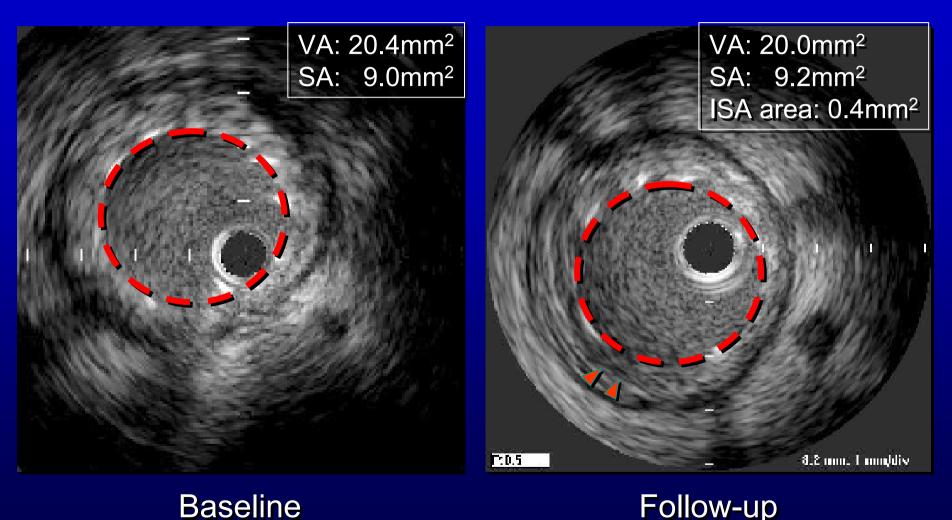

Endeavor RESOLUTE IVUS Stent Incomplete Apposition

n=96

		Patient Number	edge : body
Baseline		21.9% (21/96)	12 : 9
9-month F/up			
	Persistent	17.0% (15/88)	7 : 8
	Resolved	4.5% (4*/88)	4 : 0
	Late IA	6.8% (6#/88)	2:4
* 2 films not able to be reviewed			


1 LIA associated with positive remodeling

IVUS Analysis Incomplete stent apposition



- LISA is defined as separation of at least 1 stent strut from the vessel wall, with evidence of blood flow behind the strut, where post-stent implantation IVUS had revealed complete apposition.
- The LISA cross-sectional image is identified as the most visually representative section at follow up.
- Corresponding post implantation cross-sections are identified based on length from stent edge or peri-vascular landmarks.

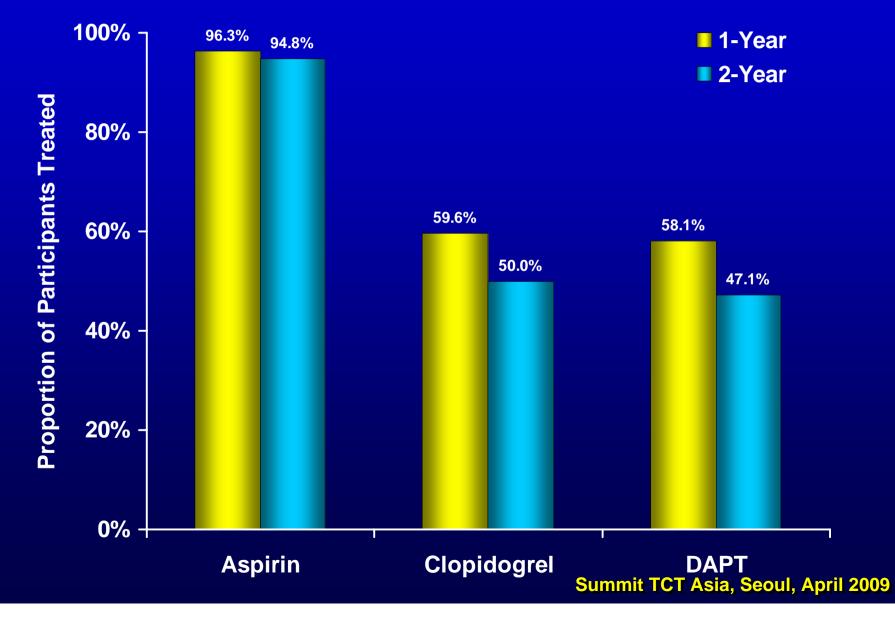
LISA Area by IVUS at Follow Up

Case Example: ZES

Follow-up

6622_008

RESOLUTE Clinical Events to 24 months

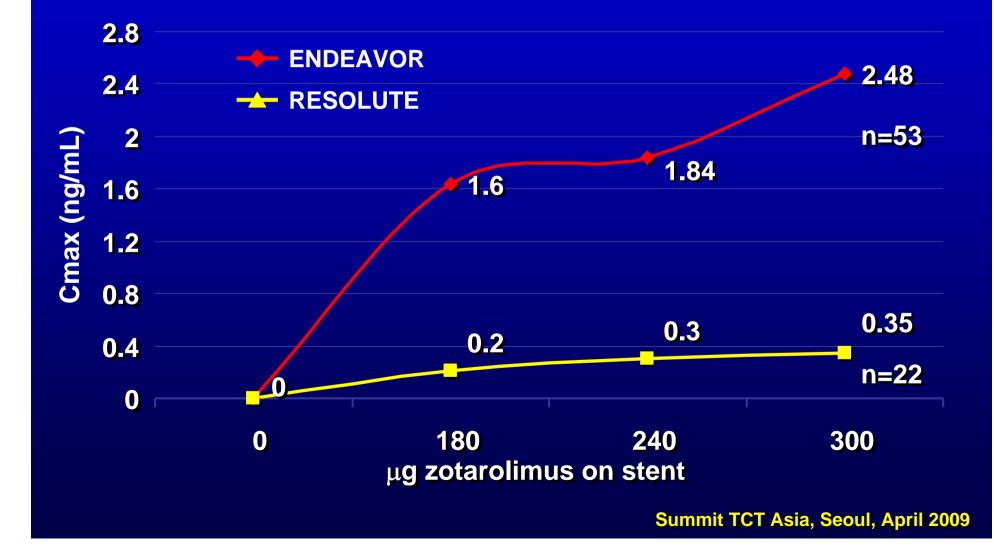

	9 months	12 months	24 months
	n=130 patients n=131 lesions	n=129 patients, 130 lesions	n= 130 patients, 131 lesions
Death (all) - % (#)	1.5 (2)	2.3 (3)	3.1 (4)
Cardiac	0.8 (1)	0.8 (1)	0.8 (1)
MI (all) - % (#)	5.4 (7)	5.4 (7)	5.4 (7)
Q Wave	0	0	0
Non Q wave	5.4 (7)	5.4 (7)	5.4 (7)
Death (cardiac) + MI (all) - % (#)	6.2 (8)	6.2 (8)	6.2 (8)
Stent Thrombosis (all) - % ()	0	0	0
0-30 days	0	0	0
31-360 days	0	0	0
TLR - % (#)	0	0.8 (1)	1.5 (2)
TVR (non-TL) - % (#)	0	0	0
TVR - % (#)	0	0.8 (1)	1.5 (2)
MACE - % (#/)	6.9 (9)	8.5 (11)	10 (13)
TVF - % (#/)	6.2 (8)	7.0 (9)	7.7 (10)
		Summit TCT	Asia, Seoul, April 200

RESOLUTE NQMI to 12 months

Comments

57 year old	Prox RCA Type C Lesion	Acute Marginal side branch of obstructed by lesion during post dilatation
67 year old	Mid RCA Type B2 Lesion	No reflow of PDA, prior to stenting
65 year old	Mid RCA Type C Lesion	RV Marginal branch has decreased flow after balloon dilatation prior to stenting
52 year old	Mid LAD Type C Lesion	Decreased flow in 1 st diagonal side after post balloon dilatation
51 year old	1 st OMA Type C Lesion	Prior MI with MB still 2x baseline at time of intervention
50 year old	Mid LAD	Wire trauma leading to plaque rupture during follow- up angiography
75 year old	Mid LAD	Fully patent stent at follow-up. Non Q-wave MI due to lack of anti-coagulation during IVUS

Endeavor RESOLUTE DAPT Use to 24 Months



RESOLUTE: DAPT Patients with a Surgical Procedure

History	Index Procedural Info	Time DAPT	Event Description	Outcome up to 12M FU
69 yo male Diabetic	Mid RCA 3.5x30mm stent	1.3 months	Laparoscopy; small bowel resection	No MACE
38 yo female Non- diabetic	Mid RCA 3.5x18 mm stent	3.0 months	Pericardial window for pericarditis	No MACE
66 yo male Non-diabetic	1 st Obtuse Marginal 2.5x18 mm stent	3.0 months	Anterior bowel resection for cancer	No MACE
77 yo female Non- diabetic	15 Patients d	iscontin	Jed AP Therapy	and had
71 yo male Non-diabe	surgical prod			
75 yo male Non-diab€	5 females			
76 yo male Non-diab€	10 males			
61 yo female Non- diabetic	1 diabetic			
54 yo male Non-diab€	-No deaths.			events
59 yo male Non-diabene	stent	3.0 montris	Total laryngeetonry and neek asseetion	
58 yo, male Non-diabetic	PDA 3.0x18mm stent	6.0 months	Surgical repair of retinal detachment	No MACE
68 yo female Non- diabetic	Mid LAD 2.5x18 mm stent	6.0 months	Arthroscopic surgery of shoulder	No MACE
65 yo male Non-diabetic	Mid RCA 3.5x30 mm stent	6.1 months	Elective cholecystectomy	No MACE
64 yo male Non-diabetic	1 st Obtuse Marginal 3.0x18 mm stent	6.3 months	Elective Cardioversion for atrial flutter	No MACE
75 yo male Non-diabetic	Mid LAD 2.5x18 mm stent	6.5 months	Patient died Summit TCT	Yes: Death, non-cardiac, melanoma Amimmetaensist, April 2009

RESOLUTE PK Sub Study

Comparison with Endeavor

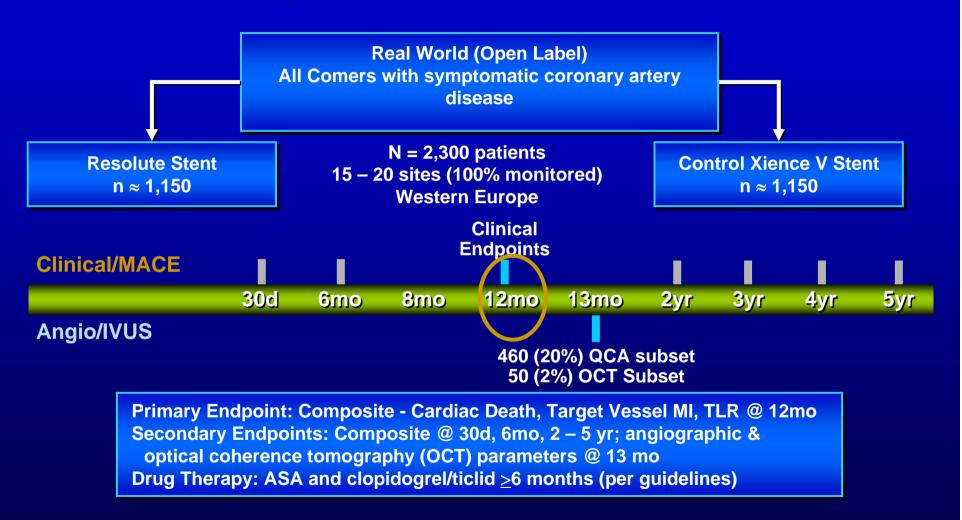
Endeavor RESOLUTE Study Conclusions

- PK confirmed design premise and expands safety margins of drug
- Consistent neo-intimal suppression with a minimal focal ABR
- Low 30 day and 9 month procedure-related MACE with no stent thromboses
- No significant safety concerns at 2 yrs

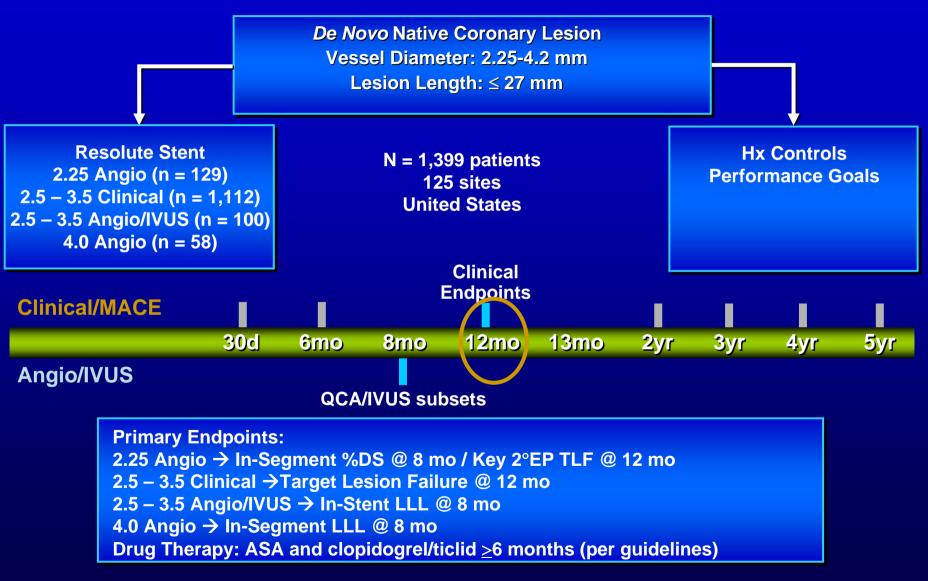
Results from this trial provide a platform for use in more complex patient and lesion cohorts.

Expanding Clinical Proof

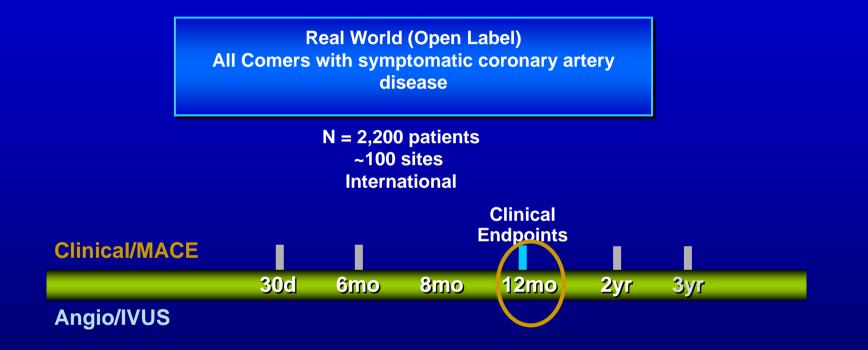
Comprehensive and robust clinical program


- More than 6000 patients to be enrolled in RESOLUTE
 Clinical program
- Approximately 5000 patients will be Endeavor Resolute patients
- 2 year results of RESOLUTE data presented at TCT,2008
- Enrolment complete for RESOLUTE All Comers (Nov, 2008)
- Enrollment is in process for RESOLUTE US and RESOLUTE Intl

RESOLUTE Clinical Program


RESOLUTE	Single Arm First-in-Human (n=139)
RESOLUTE AC*	1:1 RCT vs. Xience® (R=1,150,X=1,150)
RESOLUTE Intl	Non-RCT Observational (R=2,200) 🧐
RESOLUTE US	2.5 – 3.5 Clinical Non-RCT vs. Hx Control (R=1,112)
	2.5 – 3.5 Angio / IVUS Non-RCT vs. Hx Control (R=100)
	2.25 Angio Non-RCT (R = 129)
	4.0 Angio Non-RCT (R = 58)
	38 mm ⁺ – Long Lesion Non-RCT (R = TBD)
RESOLUTE Japan	Non-RCT (R ≈ 100)
* Resolute AC: Resolute All Comers; **: + Trial details and design TBD	RCT: Randomized Clinical Trial

RESOLUTE All Comers


Co-Pls: Profs. Serruys, Silber, Windecker

RESOLUTE US Co-Pls: M Leon, L Mauri, A Yeung

RESOLUTE International Co-Pls: Dr. Belardi / Profs Neumann & Widimský

Primary Endpoint: Composite - Cardiac Death & Target Vessel MI @ 12mo Secondary Endpoints: ARC Definite and Probable Stent Thrombosis @ 12 mo Drug Therapy: ASA and clopidogrel/ticlid <u>>6</u> months (per guidelines)