DEVICE CLOSURE OF DIFFICULT & LARGE ASD- TECHNIQUE and TRICKS

Dr. Masod Sadiq Professor of Paediatric Cardiology Lahore PAKISTAN.

Patient Selection

Key to success!
Is the defect suitable for transcatheter closure
Criteria:

ASD secundum with max diameter of 34mm
Rims except aortic rim of at least 5mm
Dimensions of total septal length not smaller than LA disc of chosen device

Echocardiography

■ TTE

Patient selection

<mark>₋ TEE</mark>

Important in patient selection

Guide implantation and assess correctness of position

ICE

Anatomy of postero-inferior secundum ASD

■ Capture of the postero-inferior rim by the device

3-D

No universal definition
 Size > 20 mm ? Device
 > 25mm

•A sound knowledge of the Atrial septal rims

Limbus of Fossa Ovale

> Tricuspid Valve

Structures that surround the secundum ASD

Coronary Sinus

Atrial Septal Rims

(Dr. Mathewson, San Diego Children's Hospital)

Shrivastava S et al Ind Heart J 2003;55:88-89 Amin Z. Catheter Cardiovasc Interv 2006;68:

4-Chamber view

Short Axis view

Balloon Sizing

- Useful most defects are oval
- Balloons can falsely stretch the ASD oversize
- "Balloon-stretched diameter" needs avoiding

"Stop-flow technique"

- Inflate the balloon until no shunt on Colour
- Deflate the balloon until shunting appears
- Re-inflate to eliminate the shunt (stop-flow diameter of ASD) Amin Z. Catheter Cardiovasc Interv 2006;68:588-94

Balloon Sizing

- Thin flailing septum primum
- Patience is a virtue

Size of the device

- Waist 1-2 mm greater than the sizing balloon diameter-stop flow diameter
- Waist 1-2 mm greater than largest size measured on colour by TEE
- Extra 2-4 mm or so when aortic margin is absent or margins are floppy
- LA must be able to accommodate the device!

Selection of device

 Amplatzer septal occluder is the only one capable of closing large defects

- •Self-Expandable
- Short-
- connecting Waist
- Nitinol wire .004" .008"
- Sizes: 4-40 mm

Standard Approach

Why standard approach does not work?

- Small LA size
- Abnormal LA curvature
- Floppy inferior rim
- Deficient rims

Small trick can work?

Large Challenging ASD's

Deficient aortic rim

- Deficient posterior rim
- Deficient aortic and posterior rims

Floppy rims

Small child with a large ASD

- Unusually placed ASD
- Multiple ASD

Any large ASD (diameter >25mm)

Deficient Aortic rim

Catheter/Dilator tip

Hausdorff sheath

Left Upper pulmonary vein technique

Balloon assisted technique (BAT)

Catheter Assisted technique

Over the wire or assisted delivery

Hausdorf-Lock sheath

Left upper pulmonary vein technique

Amin Z. Catheter Cardiovasc Interv 2006;68:588-94

LUPV Technique

Balloon Assisted Technique-Balloon in LUPV, device in LA

Dalvi BV, Pinto RJ, Gupta A. Cath Cardiovasc Interv 2005;64:102-107

Balloon in LUPV, device in LA

Balloon Assisted Technique-Balloon in LUPV, device in RUPV

Balloon in RUPV, device in LA

Deficient posterior rim

Right upper pulmonary vein techniqueLeft atrial roof technique

Right Upper pulmonary vein technique

Left Atrial Roof technique

Use of Straight, Side-hole sheath

Kutty S, Asnes JM, Srinath G, Preminger TJ, Prieto LR, Latson L. Cath and Cardiovasc Interv 2007;69:15-20.

Avoidance of complications

Air embolism

Secondary bleeding/haematoma

Arrhythmias

Device embolisationThromboembolism

Erosions/perforation

Conclusions

ASDs as large as 36-38 mm diameter can be closed

The size, rims and stability of the septum define limits

Amplatzer device is the only choiceUse of an "adequate" size device that safely fits

Conclusion-1

Standard deployment may not be adequate in large challenging ASDs

Different methods/manoeuvres needed:

- Device deployed in **R** or LUPV, left atrial roof
- Device loaded over a guidewire & deployed in a PV
- Device deployed with assistance from a catheter/dilator/<u>balloon assisted technique</u>
- Hausdorf sheath / Straight side-hole sheath
- Most complications are well understood, hence avoidable

Large but unsuitable ASD's

Absent IVC or deficient both IVC and posterior margins

Larger than 36-38mm

Closure of large ASDs

Safety shall be paramount: I can do it but shall I do

it?

A DEPARTMENTIONAL A DEPARTMENTI

The Boston Globe Magazine

Gatekeeper role of the cardiologist for surgical referrals

- Pre-op assessment
- Peri-op assessment
- Post-op assessment
- Judgment regarding adequacy of surgical results determining continued surgical referral

Ziyad Hijazi

Who is the gatekeeper for cardiologist self referrals?

ASD devices

Cardioseal

Amplatzer

Starflex

Helex

- Self-Expandable
- Short-connecting Waist
- Nitinol wire .004" .008"
- Sizes: 4-40 mm

Device closure of secundum ASD

Moderate ASD – colour jet width & balloon sizing, device closure

Procedure

Procedure

- Dilator and wire removed slowly to ensure no air is sucked into the sheath
- Device inserted in saline and examined before screwing to delivery cable
- Device loaded into the loader
- Loader attached to delivery sheath by clockwise rotation (make sure cable is not partly unscrewed)

Bi-caval View

Deficient IVC rim shall be considered a contraindication to device closure!

Data required from echocardiography

Type of ASD

- Pulmonary veins (at least two one right and one left)
- RV pressure
- Mitral valve regurgitation
- Measurements

What to measure?

- Number of ASDs
- Size of ASD
- Total septal length
- Rims

Sizing of defect

- In 4-chamber view by TTE or TEE
- AV valve rim + average size of ASD + superior rim
- A device where LA disc of ASO is equal to or smaller than the total septal length may be used

Total septal length

Delivery of device over wire in RUPV

Delivery in LUPV

Deployment in LUPV over a wire

Size of the ASD

In at least two orthogonal views – "Oval"

Three standardised views on TOE:

- 4 Chamber view
- Short axis view
- Bi-caval view

Balloon Assisted Technique Balloon in LUPV, device in RUPV

Dalvi BV, Pinto RJ, Gupta A. Cath Cardiovasc Interv 2005;64:102-107

Complications of ASD Closure Surgery versus devices

	Device n=442	Surgery N=154	р
Arrhythmia needing Rx	2	0	0.03
Device embolization with surgical removal	3		
Marker band embolism with surgical removal	1		
Cerebral embolism	1	0	1.0
Pericardial effusion with tamponade	0	3	0.017
Pulmonary oedema	0	1	0.26
Repeat surgery	0	2	0.066
Wound complications	0	2	0.066
Total	7 (1.6%)	8 (5.4%)	0.30

Ziyad Hijazi

Gatekeeper role of the cardiologist for surgical referrals

- Pre-op assessment
- Peri-op assessment
- Post-op assessment
- Judgment regarding adequacy of surgical results determining continued surgical referral

Modification of pusher cable

Avoidance of complications

Device embolisation

- Risk varies 0.5-1%
 - Undersizing
 - Improper deployment
- Especially failing to recognise deficient IVC rim
- Gentle wiggle
- Constant pull and push
- If device is not parallel to septum, it must be recaptured and redeployed

Avoidance of complications

Erosion/Perforation/PE

- Incidence of haemodynamic compromise 1/1000
 - Deficiency of aortic rim/superior rim
 - Oversizing
- Edge of RA or LA disc eroded through free atrial wall
- If extended to aorta, tamponade was rapid
- Majority occurred within 05 days
- Shape memory may play a role
- Rarely aorta to RA or LA fistula

Amin Z, Hijazi ZM, Bass JL et al. Cath and Cardiovasc Interv 2004;63:496-502

Balloon in LUPV, device in RUPV

