## Long SFA CTO: Maintaining Patency

## Ravish Sachar MD, FACC

Interventional Cardiology North Carolina Heart and Vascular

Clinical Professor of Medicine University of North Carolina Chapel Hill, NC

## **Disclosures**

**Contego Medical: Shareholder** 

Medtronic: SMAB

Abbott Vascular: SMAB

**Boston Scientific: Consultant** 

# Patients are getting older and continue to have risk factors

# SMOKE KILLS

**DUB MEDICAL** JOURNALS. CHILDREN'S SCHOOL BOOKS **E CARTOONS** E OUR NEWS **ABE FILLED** WITH DRUG INDUSTRY PROPAGANDA AND ABTICLES THAT ARE **BEING GHOST** WRITTEN FOR THE DRUG COMPANIES

THE PROVEN NUMBER OF PEOPLE EVER 'KILLED' ANYWHERE BY SOMEONE ELSE'S CIGARETTE SMOKE IS ZERO, THE NUMBERS CITED ARE MADE UP. THEY ARE COMPUTER PROJECTIONS BASED ON JUNK 'SCIENCE'

ROBERT WOOD JOHNSON FOUNDATION (RWJF) OWNS JOHNSON & JOHNSON & THE PATENT FOR NICODERM. IN 2007 ALONE, THEY DUMPED 90 MILLION DOLLARS INTO THE ANTI-SMOKING MOVEMENT. AT THEIR WEBSITE, YOU WILL FIND THEY ARE ALSO WORKING ON ALCOHOL PROHIBITION, AND THEY ARE ALSO SUPPORTING THE 'WAR ON FAT' ITHEY ALSO OWN SPLENDAJ. TO MY NON-SMOKING FRIENDS, I SAY, 'YOU ARE HEXT'. SEE WWW.forces.org



## Unmet Needs in Fem-Pop Disease

## Crossing CTOs

## Calcific Disease

## Maintaining Patency

## **Definition of Patency?**

## BINARY

## TLR

- PSVR (>2.4)
- Angiographic (>50%)
- Allows Comparison
   Between Trials
- More Objective
- Less patient bias

- Clinical outcome, more important for patient
- More Subjective
- Risk of bias
  - Follow up
  - Lifestyle
  - Desire for additional procedure

## Left SFA CTO -How should this lesion be treated in 2015?

PTA alone Bare Metal Stents Specialty Stents Atherectomy Drug Eluting Stents Drug Eluting Balloons Atherectomy + DEB



## SFA 12-MONTH PRIMARY PATENCY

PTA, BMS, DES Sub-Analyses by Lesion Length



 1. Krankenberg et al. Circulation. 2007; 116(3): 285-92
 5. Laird, ISET 2012

 2. Dake et al. Circ Cardiovasc Interv. 2011;4:495-504)
 6. Duda et al. J Endovasc Ther 2006; 13:701-710

 3. Laird et al. Circ Cardiovasc Interv. 2010; 3: 267-276
 7. Ansel, VIVA 2010

## **Bare Nitinol Stents**

### Durability II: Freedom from Loss of Primary Patency (PSVR < 2.0) at 2 Years



## **Bare Nitinol Stents**

#### Durability II: Freedom from Loss of Primary Patency (PSVR < 2.0) at 2 Years

| Freedom from<br>TLR | 1-Year<br>(N= 287) | 2-Year<br>(N= 287) | 3-Year<br>(N=287) |
|---------------------|--------------------|--------------------|-------------------|
| All Subjects        | 77.9%              | 65.9%              | 60%               |
| ≤ 80 mm<br>(n=133)  | 87.5%              | 80.8%              | 71%               |
| > 80 mm<br>(n=154)  | 69.6%              | 53.1%              | 50.5%             |
|                     |                    |                    |                   |

CTO: 48.1% Mean Lesion Length: 8.9 cm Severely Calcified: 43.2%

## **Abbott Supera**

Primary Patency at 1 Year (PSVR < 2.0)

- Superb Study
  - Primary Patency at 1 yr 86%
  - Mean Lesion Length 7.7 cm
- Supera 500 Registry
  - Primary Patency at 2 years 73%
  - Mean Stent Length 12.2 cm
- Requires Excellent Vessel Prep
- Difficulty with severe Ca++

## **SFA Restenosis**

- Stenting in SFA causes acute and chronic injury
- Ongoing injury due to mechanical stress causes local inflammation
- Inflammatory factors stimulate smooth muscle cells proliferation resulting in restenosis



### Cook 24-Month Patency (PSVR < 2.0): Provisional Zilver PTX vs. BMS



### 60 Month Patency: Zilver PTX vs. BMS

### Mean Lesion Length 5.5 cm

|            |       | 60 Month Patency<br>(PSVR< 2.0) |
|------------|-------|---------------------------------|
| Zilver PTX | 75%   | 66.4%                           |
| BMS        | 57.9% | 43.4%                           |

## Zilver PTX vs BMS: Differing Patterns of Restenosis





## Nitinol Stents: Increased lesion length is an independent predictor of decreased patency.



Freed MS, Manual of Interventional Cardiology, Fanelli DEBELLUM, SLaird, CCI, June 2010, <sup>4</sup>SMART Control IFU, <sup>5</sup>Matusumura, DURABILITY IIJVS, July 2013, <sup>6</sup>Davaine, European Journal of Vascular and Endovascular Surgery 44 (2012)

## Covered stents: VIBRANT TRIAL

148 randomized patients enrolled

Test Group: GORE® VIABAHN®

- Endoprosthesis FDA approved for SFA indication
- Did NOT include Bioactive Heparin Surface
- Did NOT include Contoured Edge Manufacturing Change n=72

#### Control Group: Bare Nitinol Stent

- Commercially available bare nitinol stent as determined by institutional standard of care when treating SFA occlusive disease and were not devices approved for SFA use
- n=76

### **Lesion Characteristics**

| LESION CHARACTERISTICS    |                           |                       |         |
|---------------------------|---------------------------|-----------------------|---------|
|                           | VIABAHN<br>Endoprosthesis | Bare<br>Nitinol Stent | p-value |
| TREATED OCCLUSIONS        | 61.1%                     | 56.6%                 | 0.62    |
| TARGET LESION LENGTH (cm) |                           |                       | 0.87    |
| Mean (Std Dev)            | 19 (8)                    | 18 (7)                |         |
| Median (Range)            | 20 (8 - 40)               | 16 (8 – 36)           |         |
| LESION CALCIFICATION      |                           |                       | 0.01    |
| None – Mild               | 37.5%                     | 57.9%                 |         |
| Moderate – Severe         | 62.5%                     | 42.1%                 |         |
| TIBIAL RUNOFF             |                           |                       | 0.10    |
| 1 Vessel                  | 15.3%                     | 22.4%                 |         |
| 2 Vessel                  | 50.0%                     | 32.9%                 |         |
| 3 Vessel                  | 34.7%                     | 44.7%                 |         |

## **VIBRANT 3 year Data**



## **Different Patterns of Restenosis**





## Viastar:

## Viabahn Covered Stent with Heparin coating and improvements in edge design

| Analysis Type                      | Covered Stent   | BMS             | P-value |
|------------------------------------|-----------------|-----------------|---------|
| 12 month Patency -<br>ITT          | 70.9%           | 55.1%           | 0.11    |
| 12 month Patency -<br>Per Protocol | 78.1%           | 53.5%           | 0.009   |
| Mean Lesion Length                 | 19.0 +/- 6.3 cm | 17.3 +/- 6.6 cm | 0.13    |
| Lesions > 20 cm                    | 71.3%           | 36.8%           | 0.01    |
| СТО                                | 79%             | 70%             |         |

## Viabahn restenosis at 12 months: Meta-analysis of 13 trials



## **Covered Stents - Questions**

 Are heparin-bonded covered stents a reasonable treatment strategy for patients with long SFA disease/CTOs?

Is patency following implantation of a covered stent graft independent of lesion length?

Is covering a stent with an ePTFE barrier as effective as anti-restenotic drug?

## Drug Eluting Balloons: Early DEB Trials



### Freedom from Clinically-driven TLR Durable Result to 24 Months in ILLUMENATE FIH



- 1. Tepe, G., et al., N Engl J Med, 2008;358: p. 689-699.
- 2. Werk M., et al., Circ Cardiovasc Interv. 2012;5(6): p. 831-840.
- 3. Werk M., Presentation. LINC 2014. Leipzig, Germany; January 28-31, 2014
- 4. Micari, A., et al., J Am Coll Cardiol Inv, 2013;6: p. 282-289.
- 5. Micari, A., et al., J Am Coll Cardiol Inv, 2012;5: p. 331-338.
- 6. Scheinert, D., et al., J Am Coll Cardiol Inv, 2014;7: p. 11-19.

## Drug Eluting Ballons InPACT SFA

### **One-Year Outcomes: Mean lesion length 8.9 cm**

|                                           | <b>DEB</b><br>(n = 220) | Angioplasty<br>(n = 111) |
|-------------------------------------------|-------------------------|--------------------------|
| Primary Patency                           | 82.2%                   | 52.4%                    |
| Clinically Driven TLR                     | 2.4%                    | 20.6%                    |
| Primary Sustained Clinical<br>Improvement | 85.2%                   | 68.9%                    |
| Primary Safety Endpoint                   | 95.7%                   | 76.6%                    |
| MACE                                      | 6.3%                    | 24.3%                    |

## SFA 12-MONTH PRIMARY PATENCY

PTA, BMS, DES Sub-Analyses by Lesion Length



 1. Krankenberg et al. Circulation. 2007: 116(3): 285–92
 5. Laird, ISI

 2. Dake et al. Circ Cardiovasc Interv. 2011:4:495–504)
 6. Duda et

 3. Laird et al. Circ Cardiovasc Interv. 2010: 3: 267–276
 7. Ansel, V

 4. Tepe et al. NEJM 2008:358:689–99
 7. Ansel, V

5. Laird, ISET 2012 6. Duda et al. J Endovasc Ther 2006; 13:701-710 7. Ansel, VIVA 2010

#### 1. Data on file at Medtronic (GLP Study FS208; GLP Study PS516)

## **DCB** Technology

### **Mechanism of action**

PACLITAXEL

UREA



#### During transit to lesion:

 Majority of matrix protected within folds of the balloon

## DCB inflation:

- Matrix contacts blood
- Blood hydrates urea
- Urea releases paclitaxel
- Due to its hydrophobic and lipophilic properties, paclitaxel binds to vessel wall

ACLITAXEL

UREA



#### Paclitaxel penetration:

- Through vessel wall deep into the media and adventitia
- Interferes with SMC proliferation
- Can remain in the vessel wall for over 180 days at therapeutic levels<sup>1</sup>

## **Drug Selection**

Both Paclitaxel and Rapamycin can limit restenosis, but key differences make Paclitaxel more suitable for DCB

Paclitaxel (Cytotoxic) Interferes with cell division

Cytotoxic drugs halt cellular replication cycle, inducing apoptosis

#### Rapamycin (Cytostatic) Interferes with cell growth

Cytostatic drugs hold a cell in G<sub>0</sub> phase, arresting growth

Rapid transfer via excipient allows acute delivery, especially beneficial if no artificial reservoir is present



Prolonged elution via polymeric 'reservoir' allows sustained delivery, especially beneficial when foreign body is present

## **Dose Selection**

### Paclitaxel offers a wide therapeutic window



Therapeutic range 2-4 μg/mm<sup>2</sup> IN.PACT Admiral: 3.5 μg/mm<sup>2</sup>

- Dose-dependent response up to 2-4 µg/mm<sup>2</sup>
- Wide, stable therapeutic window with no statistically significant differences in neointimal inhibition or local toxic effects from 4 up to 10 µg/mm<sup>2</sup>
- Clinically effective drug levels transfer within 60 seconds, with no negative clinical effects from longer inflation time

1. Scheller B, et al. PTX Balloon Coating, a Novel Method for Prevention and Therapy of Restenosis. *Circulation*. 2004;110:810-814. 2. Speck U, Scheller B, Abramjuk C,

et al. Neointima inhibition: comparison of effectiveness of nonstent-based local drug delivery and a DES in porcine coronary arteries. *Radiology*. 2006;240:411–418.

3. Cremers B, et al. Comparison of two different PTX-coated balloon catheters in the porcine coronary restenosis model. *Clin Res Cardiol.* 2009;98:325–330.

Cremers B, et al DEB: Very short-term exposure and overlapping. Thromb Haemost. 2009; 101: 201–206.
 Rowinsky EK, Donehower RC. Paclitaxel (Taxol).

N Engl J Med. 1995;332:1004-1014. 6. Margolis J, McDonald J, Heuser R, et al. Systemic nanoparticle PTX (nab-PTX) for ISR I (SNAPIST-I): A first-inhuman safety and dose-finding study. Clin Cardiol. 2007;30:165-170

## Long CTO

Courtesy of F. Fannelli MD



### Sub-intimal recan.

Pre-dil: Admiral 4 x 120 mm

Treatment: IN.PACT Admiral 5 x 120 mm

### ABI: 0.5



## Long CTO, Post DCB 12-month FU Angiogram

Courtesy of F. Fannelli MD



### Comparative Data Between DCB and DES Therapies



Note: Binary restenosis rates are not directly comparable; chart is for illustration only; IN.PACT SFA and LEVANT II binary restenosis rates determined by same independent core laboratory.

## **Pharmacokinetics and Histology**





Green staining evidence of PTX in pig model vessel @ 28 days

## **DCB and Provisional Stenting**

## Scaffolds still needed, likely at rates proportional to lesion complexity

#### Provisional stent rates in DCB trials trend with lesion length



## Atherectomy Trials Wide variation in sample size



Safian et al. Cath & Cardiovasc Interv 73:406:412
 Zeller et al. J Endovasc Ther 2009;16:653-662
 Dattilo, TCT 2011

4. Shammas et al. J Endovasc Ther 2012;19:480-488 5. Dave et al. J Endovasc Ther 2009;16:665-675

### ATHERECTOMY TRIALS CORE-LAB ADJUDICATED 12-MO. PATENCY



1. Dave J. Endovasc. Ther. 2009;13:665-675

2. Zeller et al. J Endovasc. Ther. 2009;16:653-66

# Primary Patency: Stenosis<sup>®</sup>vs. Occlusion

|                            | Patency<br>(PSVR <u>&lt;</u> 2.4) | Lesion Length<br>(cm) |
|----------------------------|-----------------------------------|-----------------------|
| All Claudicants (n= 743)   | 78%                               | 7.5                   |
| Lesion type                |                                   |                       |
| Stenoses (n=611 lesions)   | 81%                               | 6.7                   |
| Occlusions (n=128 lesions) | 64%                               | 11.1                  |
|                            |                                   |                       |

## **Definitive AR**

**Purpose:** Pilot study designed to assess and estimate the effect of treating a vessel with directional atherectomy + DCB (DAART) compared to treatment with DCB alone



Severe Calcification: Dense circumferential calcification and calcification extending more than <u>five</u> (5) continuous centimeters of length prior to contrast injection or digital subtraction angiography

Registry arm for severely calcified lesions created to limit bail-out stenting (and therefore variables) in randomized arm.

\* <u>D</u>irectional <u>A</u>therectomy + <u>A</u>nti-<u>R</u>estenotic <u>T</u>herapy

## Baseline Lesion Characteristics Per Core Lab Assessment

|                                   | DAART<br>Severe Ca++ Arm<br>(N=19) | DAART<br>(N= 48) | DCB<br>(N = 54) |
|-----------------------------------|------------------------------------|------------------|-----------------|
| Lesion Length (cm)                | 11.9                               | 10.6             | 9.7             |
| Diameter Stenosis                 | 88%                                | 82%              | 85%             |
| Reference vessel diameter<br>(mm) | 5.1                                | 4.9              | 4.9             |
| Minimum lumen diameter<br>(mm)    | 0.7                                | 1.0              | 0.8             |

## Atherectomy + DEB: Higher Acute Technical Success

Defined as  $\leq$  30% residual stenosis following the protocoldefined treatment at the target lesion as determined by the Angiographic Core Laboratory.



## Atherectomy + DEB: Lower need for post PTA and Bail Out Stenting



## **Angiographic Patency at 12 Months**

Angiographic Patency shows similar pattern



Per Core Lab Assessment. "All Severe Ca++ " group includes all patients with severe calcium (including randomized and non-randomized. Results for all patients who returned for angiographic follow-up.

### What is the Impact of Lumen Gain with DA+DCB? Post Procedure MLD (DA+DCB vs DCB alone)

DA+DCB resulted in a significantly <u>larger</u> minimum lumen diameter (MLD) following the protocol-defined treatment in DEFINITIVE AR



### **12-Month Patency: DA+DCB RCT Patients** Increased lumen gain with DA <u>before</u> DCB may result in

*improved 12-month patency* 



## Best Strategy for Long Segment Fem Pop CTOs?

- Cross CTO
- Vessel Prep
  - Pre-Dilation
  - Atherectomy
- Drug Eluting Balloon
  - Optimal PTA long balloon inflations
  - Does not appear to be a class effect
- Spot stenting if needed for flow limiting dissection
- Role of covered stents?





## Long Term Patency: What should we expect in 2015?

### What do we know

- Fem-pop lesions
- 7-9 cm mean length, 12 month patency (not TLR) should be 75-85%
- Below that is probably not acceptable

### Goals

- Higher Patency, Longer Lesions, More Durability
- Improved Outcomes in TASC C/D, including CTOs
- Further trials are needed to understand which combination of DEB, DES, Covered Stent, Atherectomy will get us there
- Societal consensus is needed to standardize definitions of patency to allow true comparisons