# Long SFA CTO: Maintaining Patency 

## Ravish Sachar MD, FACC

Interventional Cardiology
North Carolina Heart and Vascular

Clinical Professor of Medicine
University of North Carolina
Chapel Hill, NC

## Disclosures

Contego Medical: Shareholder
Medtronic: SMAB
Abbott Vascular: SMAB
Boston Scientific: Consultant

# Patients are getting older and 

 continue to have risk factors| -1/0 0 ¢ |  |
| :---: | :---: |
| нะะ: BUT M |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| wiminaus |  |
| molsini $)$ ¢ |  |
|  |  |
|  |  |
| that abie | THEAAR |
| Weing eillst if bryor compu |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| WIIL FISD THEY ARE AISO WOBRIMG OMALCOHOL PROHIBTIOL, AND THEY |  |
|  |  |
|  |  |



# Unmet Needs in Fem-Pop Disease 

## $\checkmark$ Crossing CTOs

## $\checkmark$ Calcific Disease

$\square$ Maintaining Patency

## Definition of Patency?

## BINARY

- PSVR (>2.4)
- Angiographic (>50\%)
- Allows Comparison Between Trials
- More Objective
- Less patient bias


## TLR

- Clinical outcome, more important for patient
- More Subjective
- Risk of bias
- Follow up
- Lifestyle
- Desire for additional procedure

Left SFA CTO -
How should this lesion be treated in 2015?
-PTA alone
-Bare Metal Stents
-Specialty Stents

- Atherectomy
-Drug Eluting Stents
-Drug Eluting Balloons
-Atherectomy + DEB



## SFA 12-MONTH PRIMARY PATENCY

PTA, BMS, DES Sub-Analyses by Lesion Length


1. Krankenberg et al. Circulation. 2007; 116(3): 285-92 2. Dake et al. Circ Cardiovasc Interv. 2011:4:495-504) 3. Laird et al. Circ Cardiovasc Interv. 2010; 3: 267-276 4. Tepe et al. NEJM 2008:358:689-99
2. Laird, ISET 2012
3. Duda et al. J Endovasc Ther 2006; 13:701-710 7. Ansel, VIVA 2010

## Bare Nitinol Stents

## Durability II:

Freedom from Loss of Primary Patency (PSVR < 2.0) at 2 Years


## Bare Nitinol Stents

## Durability II:

Freedom from Loss of Primary Patency (PSVR < 2.0) at 2 Years

| Freedom from <br> TLR | 1-Year <br> $(\mathrm{N}=287)$ | 2-Year <br> $(\mathrm{N}=287)$ | 3-Year <br> $(\mathrm{N}=287)$ |
| :--- | :---: | :---: | :---: |
| All Subjects | $77.9 \%$ | $65.9 \%$ | $60 \%$ |
| $\leq 80 \mathrm{~mm}$ <br> $(\mathrm{n}=133)$ <br> $>80 \mathrm{~mm}$ <br> $(\mathrm{n}=154)$ | $87.5 \%$ | $80.8 \%$ | $71 \%$ |

CTO: 48.1\%
Mean Lesion Length: 8.9 cm Severely Calcified: 43.2\%

## Abbott Supera <br> Primary Patency at 1 Year (PSVR <2.0)

- Superb Study
- Primary Patency at $1 \mathrm{yr}-86 \%$
- Mean Lesion Length 7.7 cm
- Supera 500 Registry
- Primary Patency at 2 years 73\%
- Mean Stent Length 12.2 cm
- Requires Excellent Vessel Prep
- Difficulty with severe Ca++


## SFA Restenosis

- Stenting in SFA causes acute and chronic injury
- Ongoing injury due to mechanical stress causes local inflammation
- Inflammatory factors stimulate smooth muscle cells proliferation resulting in restenosis



## Cook 24-Month Patency (PSVR < 2.0): Provisional Zilver PTX vs. BMS



## 60 Month Patency: Zilver PTX vs. BMS

Mean Lesion Length 5.5 cm

| Stent | 48 Month Patency <br> $(P S V R ~<~ 2.0) ~$ | 60 Month Patency <br> $($ PSVR 2.0$)$ |
| :--- | :--- | :--- |
| Zilver PTX | $75 \%$ | $66.4 \%$ |
| BMS | $57.9 \%$ | $43.4 \%$ |

Zilver PTX vs BMS: Differing Patterns of Restenosis


## Nitinol Stents: Increased lesion length is an independent predictor of decreased patency.


${ }^{1}$ Freed MS, Manual of Interventional Cardiology, ${ }^{2}$ Fanelli DEBELLUM, ${ }^{3}$ Laird, CCI, June
2010, ${ }^{4}$ SMART Control IFU, ${ }^{5}$ Matusumura, DURABILITY IIJVS, July 2013, ${ }^{6}$ Davaine,
European Journal of Vascular and Endovascular Surgery 44 (2012)

## Covered stents: VIBRANT TRIAL

- 148 randomized patients enrolled
- Test Group: GORE® VIABAHN®
- Endoprosthesis FDA approved for SFA indication
- Did NOT include Bioactive Heparin Surface
- Did NOT include Contoured Edge Manufacturing Change n=72
- Control Group: Bare Nitinol Stent
- Commercially available bare nitinol stent as determined by institutional standard of care when treating SFA occlusive disease and were not devices approved for SFA use
" n=76


## Lesion Characteristics

## LESION CHARACTERISTICS

|  | VIABAHN <br> Endoprosthesis | Bare <br> Nitinol Stent | p-value |
| :--- | :--- | :--- | :--- |
| TREATED OCCLUSIONS | $\mathbf{6 1 . 1 \%}$ | $\mathbf{5 6 . 6 \%}$ | $\mathbf{0 . 6 2}$ |
| TARGET LESION LENGTH (cm) |  |  | $\mathbf{0 . 8 7}$ |
| Mean (Std Dev) | $19(8)$ | $18(7)$ |  |
| Median (Range) | $20(8-40)$ | $16(8-36)$ |  |
| LESION CALCIFICATION | $37.5 \%$ | $57.9 \%$ | 0.01 |
| None - Mild | $62.5 \%$ | $42.1 \%$ |  |
| Moderate - Severe |  |  |  |
| TIBIAL RUNOFF | $15.3 \%$ | $22.4 \%$ |  |
| 1 Vessel | $50.0 \%$ | $32.9 \%$ |  |
| 2 Vessel | $34.7 \%$ | $44.7 \%$ |  |
| 3 Vessel |  |  |  |
|  |  |  |  |

## VIBRANT 3 year Data



## Different Patterns of Restenosis



## Viabahn

Viastar:
Viabahn Covered Stent with Heparin coating and improvements in edge design

| Analysis Type | Covered Stent | BMS | P-value |
| :--- | :--- | :--- | :--- |
| 12 month Patency - <br> ITT | $70.9 \%$ | $55.1 \%$ | 0.11 |
| 12 month Patency - <br> Per Protocol | $78.1 \%$ | $53.5 \%$ | 0.009 |
| Mean Lesion Length | $19.0+/-6.3 \mathrm{~cm}$ | $17.3+/-6.6 \mathrm{~cm}$ | 0.13 |
| Lesions > 20 cm |  | $71.3 \%$ | $36.8 \%$ |

## Viabahn restenosis at 12 months:

 Meta-analysis of 13 trials

## Covered Stents - Questions

- Are heparin-bonded covered stents a reasonable treatment strategy for patients with long SFA disease/CTOs?
- Is patency following implantation of a covered stent graft independent of lesion length?
- Is covering a stent with an ePTFE barrier as effective as anti-restenotic drug?


# Drug Eluting Balloons: Early DEB Trials 



## Freedom from Clinically-driven TLR Durable Result to 24 Months in ILLUMENATE FIH



1. Tepe, G., et al., N Engl J Med, 2008;358: p. 689-699.
2. Werk M., et al., Circ Cardiovasc Interv. 2012;5(6): p. 831-840.
3. Werk M., Presentation. LINC 2014. Leipzig, Germany; January 28-31, 2014
4. Micari, A., et al., J Am Coll Cardiol Inv, 2013;6: p. 282-289.
5. Micari, A., et al., J Am Coll Cardiol Inv, 2012;5: p. 331-338.
6. Scheinert, D., et al., J Am Coll Cardiol Inv, 2014;7: p. 11-19.

## One-Year Outcomes: Mean lesion length 8.9 cm

|  | DEB <br> $(n=220)$ | Angioplasty <br> $(n=111)$ |
| :--- | :---: | :---: |
| Primary Patency | $82.2 \%$ | $52.4 \%$ |
| Cinically Driven TLR | $2.4 \%$ | $20.6 \%$ |
| Primary Sustained Clinical <br> Improvement | $85.2 \%$ | $68.9 \%$ |
| Primary Safety Endpoint | $95.7 \%$ | $76.6 \%$ |
| MACE | $6.3 \%$ | $24.3 \%$ |

## SFA 12-MONTH PRIMARY PATENCY

PTA, BMS, DES Sub-Analyses by Lesion Length


## DCB Technology

## Mechanism of action



## DCB matrix coating:

- Paclitaxel + Urea


## During transit to lesion:

- Majority of matrix protected within folds of the balloon


DCB inflation:

- Matrix contacts blood
- Blood hydrates urea
- Urea releases paclitaxel
- Due to its hydrophobic and lipophilic properties, paclitaxel binds to vessel wall



## Paclitaxel penetration:

- Through vessel wall deep into the media and adventitia
- Interferes with SMC proliferation
- Can remain in the vessel wall for over 180 days at therapeutic levels ${ }^{1}$


## Drug Selection

## Both Paclitaxel and Rapamycin can limit restenosis, but key differences make Paclitaxel more suitable for DCB



Cytotoxic drugs halt cellular replication cycle, inducing apoptosis

## Rapamycin (Cytostatic) Interferes with cell growth

Cytostatic drugs hold a cell in $\mathrm{G}_{0}$ phase, arresting growth

Rapid transfer via excipient allows acute delivery, especially beneficial if no artificial reservoir is present


Prolonged elution via polymeric 'reservoir' allows sustained delivery, especially beneficial when foreign body is present

## Dose Selection

## Paclitaxel offers a wide therapeutic window

- Dose-dependent response up to 2-4
 $\mu \mathrm{g} / \mathrm{mm}^{2}$
- Wide, stable therapeutic window with no statistically significant differences in neointimal inhibition or local toxic effects from 4 up to $10 \mu \mathrm{~g} / \mathrm{mm}^{2}$
- Clinically effective drug levels transfer within 60 seconds, with no negative clinical effects from longer inflation time


Sub-intimal recan.

Pre-dil:
Admiral
$4 \times 120 \mathrm{~mm}$

Treatment:
IN.PACT Admiral
$5 \times 120 \mathrm{~mm}$

ABI: 0.5


# Long CTO, Post DCB 12-month 



ABI: 0.9

## Comparative Data Between DCB and DES Therapies

## 12-month Binary Restenosis



## Pharmacokinetics and Histology




Green staining evidence of PTX in pig model vessel @ 28 days

## DCB and Provisional Stenting

## Scaffolds still needed, likely at rates proportional to lesion complexity

## Provisional stent rates in DCB trials trend with lesion length



## Atherectomy Trials Wide variation in sample size



## ATHERECTOMY TRIALS <br> CORE-LAB AdJUDICATED 12-MO. PATENCY



## Primary Patency: Stenosis vs. Occlusion

|  | Patency <br> $(P S V R \leq 2.4)$ | Lesion Length <br> $(\mathrm{cm})$ |
| :--- | :---: | :---: |
| All Claudicants (n=743) | $\mathbf{7 8 \%}$ | $\mathbf{7 . 5}$ |
| Lesion type |  |  |
| Stenoses (n=611 lesions) | $81 \%$ | 6.7 |
| Occlusions (n=128 lesions) | $64 \%$ | 11.1 |

## Definitive AR

Purpose: Pilot study designed to assess and estimate the effect of treating a vessel with directional atherectomy + DCB (DAART) compared to treatment with DCB alone


Severe Calcification: Dense circumferential calcification and calcification extending more than five (5) continuous centimeters of length prior to contrast injection or digital subtraction angiography

Registry arm for severely calcified lesions created to limit bail-out stenting (and therefore variables) in randomized arm.

[^0]
## Baseline Lesion Characteristics Per Core Lab Assessment

|  | DAART <br> Severe Ca++ Arm <br> $(\mathrm{N}=19)$ | DAART <br> $(\mathrm{N}=48)$ | DCB |
| :--- | :---: | :---: | :---: |
| Lesion Length (cm) | 11.9 | 10.6 | 9.7 |
| Diameter Stenosis <br> Reference vessel diameter <br> (mm) | $88 \%$ | $82 \%$ | $85 \%$ |
| Minimum lumen diameter <br> $(m m)$ | 5.1 | 4.9 | 4.9 |

## Atherectomy + DEB: Higher Acute Technical Success

Defined as $\leq 30 \%$ residual stenosis following the protocoldefined treatment at the target lesion as determined by the Angiographic Core Laboratory.

## DAART DAART DCB <br> Severe $\mathrm{Ca}^{++}$ <br> P Value (DAART vs. DCB)

Technical Success

84.2\%<br>89.6\% 64.2\%<br>0.004

## Atherectomy + DEB: Lower need for post PTA and Bail Out Stenting

DAART Severe DAART DCB $\mathrm{Ca}^{++}$

P Value
(DAART vs. DCB)

Adjunctive Therapy
33.3\%
(18/54)
0.0011

Bail-out Stent

## Angiographic Patency at 12 Months

Angiographic Patency shows similar pattern


Per Core Lab Assessment. "All Severe Ca++ " group includes all patients with severe calcium (including randomized and non-randomized. Results for all patients who returned for angiographic follow-up.

## What is the Impact of Lumen Gain with DA+DCB? Post Procedure MLD (DA+DCB vs DCB alone)

DA+DCB resulted in a significantly larger minimum lumen diameter (MLD) following the protocol-defined treatment in DEFINITIVE AR


## 12-Month Patency: DA+DCB RCT Patients

 Increased lumen gain with DA before $D C B$ may result in improved 12-month patency

## Best Strategy for Long Segment Fem Pop CTOs?

- Cross CTO
- Vessel Prep
- Pre-Dilation
- Atherectomy
- Drug Eluting Balloon
- Optimal PTA - long balloon inflations
- Does not appear to be a class effect
- Spot stenting if needed for flow limiting dissection
- Role of covered stents?



## Long Term Patency: What should we expect in 2015?

- What do we know
- Fem-pop lesions
- 7-9 cm mean length, 12 month patency (not TLR) should be 75-85\%
- Below that is probably not acceptable
- Goals
- Higher Patency, Longer Lesions, More Durability
- Improved Outcomes in TASC C/D, including CTOs
- Further trials are needed to understand which combination of DEB, DES, Covered Stent, Atherectomy will get us there
- Societal consensus is needed to standardize definitions of patency to allow true comparisons


[^0]:    * Directional Atherectomy + Anti-Restenotic Therapy

