

DES In-Stent Restenosis: Mechanisms, Frequency, Clinical Outcomes, and Treatment Alternatives

Ron Waksman, MD Washington Hospital Center

C RT2011 FEBRUARY 27-MARCH 1, 2011 OMNI SHOREHAM HOTEL WASHINGTON, DC WWW.CRTONLINE.ORG

CORONARY

ENDOVASCULAR INTENSIVE

TECHNOLOGY

NURSE & TECH

SCIENCE

DISCLOSURES

Ron Waksman, MD

Consulting Fees

 Abbott Vascular, Biotronik, Medtronic CardioVascular, Inc, Boston Scientific Corporation

Grants/Contracted Research

 Abbott Vascular, Biotronik, Boston Scientific Corporation, The Medicines Company, GlaxoSmithKline, Schering-Plough, sanofi-aventis U.S. LLC

CARDIOVASCULAR RESEARCH TECHNOLOGIES

Mechanism of DES Restenosis

- Biological factors
 Drug resistance
 Hypersensitivity
- Mechanical factors

Non uniform stent strut distribution
Stent fractures
Polymer peeling
Non uniform drug deposition

• Technical factors

Incomplete stent expansion Stent gaps or "misses" (uncovered lesion segments) Barotrauma to unstented segments

Patterns of in-stent restenosis predict outcomes in the DES era?

Focal (N = 132) Repeat DES 57.1%, POBA 42.9%

Non focal (N = 71) Repeat DES 69%, POBA 31%

Cosgrave J. et al. JACC 2006;47: 2399-404

DES fractures

Aoki J. et al. CC/ 2007;69: 380-6

Among 188 pts with DES restenosis, stent fracture was identified in 35 (18.5%) cases.

Shaikh F et al. TCT 2006

- From 2003 to 2007, 535 patients presenting with angiographic ISR after DES implantation were included. Of these, 396 patients completed 1year follow-up
- The primary endpoint was defined as clinically driven target lesion revascularization (TLR) at 1year follow up
- Stepwise manner multivariable analysis (retention criteria p< 0.2) was used to determine predictors of recurrent ISR at 1-year follow-up

Non-adjusted predictors of recurrent ISR at 1-year follow-up

	HR	95% CI	Valor P
Age	1.0	0.99-1.05	0.9
Presentation with AMI	3.1	1.1-8.6	0.03
Diabetes	0.9	0.5-1.5	0.6
Chronic renal failure	1.1	0.5-2.3	0.7
Baseline Us-CRP	1.0	0.99-1.05	0.003
Prior VBT failure	1.3	0.3-5.2	0.7
Ostial location	1.4	0.3-6.1	0.7
Type C lesion, AHA/ACC	0.5	0.1-2.2	0.3
Therapy option	0.9	0.4-2.0	0.9
VBT	0.8	0.3-2.5	0.4
c-PCI	0.7	0.4-1.4	0.3
Diffuse ISR (> 10 mm)	1.7	0.2-13	0.6
Focal ISR (< 10 mm)	1.9	0.3-14	0.5
Stent diameter	1.7	0.8-4.1	0.5

DES Restenosis Therapeutic approaches

Conventional POBA, Cutting Balloon

Same versus Different DES

Vascular Brachytherapy

Drug Eluting Balloon

QCA data @ 9 months

Cosgrave J. et al. JACC 2006;47: 2399-404

Vascular Brachytherapy: Effective Treatment for Patients with Drugeluting Stent Restenosis

Bonelloo, Waksman et al. J Interv Cardiol. 2008

Radiation (IRT) vs DES for DES Failures Results form the RESCUE Trial

Torguson R. et al. Am J Cardiol 2006;98:1340-4

Treatment of Drug-Eluting Stent Restenosis with the Same or Different Drug-Eluting Stent: To Switch or not to Switch

Kimberly Smith Kaneshige, Rebecca Torguson, Zhenyi Xue, Daniel H. Steinberg, Tina L. Pinto Slottow, Probal K. Roy, Saquib Samee, Joseph Lindsay, Augusto D. Pichard, Lowell Satler, William O. Suddath, Kenneth Kent, Ron Waksman Washington Hospital Center, Washington, DC

Indication for Implantation of Failed DES

Clinical Indications (%)	Same DES n=90	Other DES n=76	p Value
Stable Angina	35.6	32.9	0.719
Unstable Angina	40.0	39.5	0.945
Silent Ischemia	6.7	9.2	0.543
ST-elevation Myocardial Infarction	11.1	7.9	0.484

12 Month Similar Between Same versus Other DES

Same DES vs other DES vs other treatment for DES Failures

Cosgrave J. et al. AHJ.2007;153: 354-9

SES vs PES for SES Failures Multicenter Registry in Asia

Same DES vs other DES vs. other treatment for DES Failures

Late loss in-segment - comparison Paccocath ISR I with ISAR DESIRE

*data from ISAR DESIRE; Kastrati, JAMA 2005; 293: 165 - 71

Late lumen loss in-segment

Drug Eluting Balloon Paccocath ISR I vs. II

Paccocath ISR I/II - MACE

Mantel-Cox log-rank test; p-values adjusted according to Fisher's method of combining independent tests

DEB for ISR of BMS and DES

The Valentines trial is a unique first of it's kind registry.

From Valentines day (14. Feb. 2010) till the end of the CRT congress in Washington (23. Feb. 2010) it will enrol as many ISR cases of a previous placed stent as possible

Current therapeutic options according to potential mechanisms of DES restenosis

Type of restenosis	Potential mechanisms	Treatment options
Focal in-stent	Underexpansion	BA
	Fracture	DES, BA
	Local vessel biology	DES, BA, DEB
	Heterogeneous drug distribution	DES, BA, DEB VBT
Focal at stent edge	Geographic miss	DES
	Plaque progression	DES
Diffuse in-stent	Vessel biology / Drug resistance	Different DES, CABG VBT DEB
Proliferative	Vessel biology / Drug resistance	Different DES, VBT CABG DEB

DES Restenosis

Summary

- Restenosis after DES still occurs and at a disturbing frequency in the highest risk lesion/patient subsets.
- Underlying mechanism of DES restenosis involve a complex interplay of biological, mechanical, and technical (operator-dependent) factors.
- Strut fractures are more frequent than previously suspected, occurring most commonly at the edge of an overlap segment and they have been implicated in many clinical events, including restenosis, thrombosis, and aneurysm formation.

DES Restenosis

Summary

- The treatment of DES restenosis is based on appreciation of underlying mechanisms and can vary from simple POBA, to DES.
- Drug Eluting Balloon is currently tested for this applicattion
- When appropriate, VBT or CABG remains an effective therapeutic option
- The absence of the traditional predictors for ISR in this population invokes the presence of unrecognized predisposed conditions