Left Main and Bifurcation Summit TCTAP2010

Angiographic Assessment of Bifurcation Lesions

Alexandra Lansky, MD Columbia University Medical Center

Columbia University Medical Center

Diagnostic Considerations Ostial SB Lesion Severity at Baseline

Diagnostic Considerations Ostial SB Lesion Severity after SB Jailing

Angiography vs FFR: To treat or Not Fractional Flow Reserve (FFR <0.75 = ischemia)

- SB FFR measured in 94 pts after side branch jailing
- FFR reflects both degree of stenosis and myocardial territory

Bon-Kwon Koo, MD

Physiologic Assessment of Jailed Side Branch Lesions Using Fractional Flow Reserve (FFR)

Correlation between FFR and % Stenosis

Conclusions: QCA is unreliable in the "functional" assessment of stenosis severity in jailed SBs. Conversely, FFR measurements demonstrate that most of stenotic SBs do not have functional significance

CARDIOVASCULAR RESEARCH F O U N D A T I O N Koo, B.-K. et al. JACC 2005;46:633-637

SB Stent Underexpansion After Crush

Final optimal angiographic result

				SB stent ostium
Variable	PV	SB	Р	and the second s
Stent minimum CSA, mm ²	6.5 ±1 .7	3.9 ± 1.0	<0.0001	SB distal stent
Stent expansion, %	92.1 ± 1 6.6	79.9 ± 12.3	0.02	
Stent CSA<4 mm ²	10% (2/20)	55% (11/20)	0.007	MARS D
Stent CSA<5 mm ²	20% (4/20)	90% (18/20)	<0.0001	Alla Sall
5		osta Rotal I	ACC	

Costa R. et al, JACC 2006; 46: 599-605.

Correlation Between IVUS and QCA Final MLD in Parent Vessel and Side Branch Following "Crush" Stenting

Incomplete "Crush" Apposition

Complete crush (apposition) of the SB stent – arrows indicate the 3 layers of stent struts Incomplete crushing – incomplete apposition of the SB or PV stent struts against the MV wall proximal to the carina, found in >60% of non-LM lesions

Costa R. et al, JACC 2006; 46: 599-605.

MV= main vessel; SB= side branch

Columbia University Medical Center

After Bifurcation PCI...A preponderance of Restenosis occurs in the SB Ostium

CARDIOVASCULAR RESEARCH

CARDIOVASCULAR RESEARCH F O U N D A T I O N=

Understanding Ostial geometry: Transition Zone Taper Greater by 3-fold

Courtesy of Mary Russel, MD, PhD

Coronary Casts: Understanding Ostial Geometry Oval and Asymmetric Rather than Round

Courtesy of Mary Russel, MD, PhD

Example: Side Branch of RCA

Front view of ostium with SB removed

Sketches of ostium

CARDIOVASCULAR RESEARCH

Size of the ostium changes with the angle of bifurcation

Courtesy P Mortier et al

The University Hospital of Columbia and Cornell

Overview of investigated stents Cell Equivalent circumference diameter [mm] [mm] Endeavor (Medtronic) 9.5 3.0 200um **PRO-Kinetic** (Biotronik) 19.8 6.3 200µm Promus 10.8 3.4 (Boston Scientific) 200µm 12.6 4.0 Taxus Liberté (Boston Scientific) 12.6 4.0 200um COLUMBIA UNIVERSITY 50 MEDICAL CENTER Courtesy P Mortier et al NewYork-Presbyterian The University Hospital of Columbia and Cornell CARDIOVASCULAR RESEARCH

During provisional stenting, stent cells are distorted by PTCA

Courtesy El-Jack et al

Columbia University Medical Center

Limitation of Current QCA software Different Results for Same Lesion

Artificial "interpolation" of RVD across carina Carinal segment reported 3 times with differing results

3.13 mm

Diameter stenosis

35.45 %

Obstruction length

14.36 mm

CARDIOVASCULAR RESEARCHCOnfidential

2,92 mm

Diameter stenosis

41.15 %

Obstruction length

3.98 mm

3.70 mm

Diameter stenosis

53.74 %

Obstruction length

7.35 mm

CARDIOVASCULAR RESEARCH F O U N D A T I O №

Edge Segment Definitions

	Length	Position MLD	MLD	Ref D	% DS	Distance	Max D	Mean D
						MLD-stent		
Segment 1	5.00	0.523	3.843	3.728	-3.07	0.174	3.845	3.844
Segment 2	18.50	6.099	3.407	3.709	8.14		3.854	3.604
Segment 3	6.53	25.724	2.560	2.462	-3.96		3.231	2.975
Segment 4	5.00	27.485	2.229	2.443	8.76	1.761	2.560	2.380
Segment 5	10.63	19.253	1.786	2.368	24.57		5.400	2.160
Segment 6	5.00	30.012	1.685	1.944	13.31	1.056	2.035	1.815
Segment 7	5.00	24.198	2.876	2.478	-16.04		3.231	3.049
Segment 8	5.00	19.253	1.786	2.368	24.57		5.400	2.158
Segment 9	19.20	6.099	3.407	3.709	8.14		3.854	3.613
Segment 10	11.53	27.485	2.229	2.443	8.76		3.231	2.717
Segment 11	15.63	19.253	1.786	2.368	24.57		5.400	2.050

Bifurcation Core Analysis

OUNDATION

COLUMBIA UNIVERSITY MEDICAL CENTER

Bifurcation Core Triangle as a Measure for Carina Shift, Ostial Scaffolding, and Ostial Preservation

The University Hospital of Columbia and Cornell

Conclusions

- Angiography has many limitations in assessing bifurcation lesions
- Novel QCA software is designed to accurately derive reference measures and minimal luminal diameters
- Given the asymmetry at the MV and SB transition zone, traditional QCA miss dimensions relevant to the ostial intersection
- Bifurcation Core area and angle measures provide ostial SB geometry changes from baseline to final treatment
- This new QCA analysis should provide critical information to guide intervention procedures and new device development

Columbia University Medical Center