Proximal and Distal Protection for Carotid Intervention:

No Room for CEA?

Robert M. Bersin, MD, MPH Swedish Heart and Vascular Seattle, WA

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

The following relationships exist for this speaker:

Name of Company: Abbott Vascular C, P, SB Name of Company: Boston Scientific AB, C, EI, P, SB Name of Company: Cook, Inc. C, P Name of Company: Cordis Endovascular C, EI. P Name of Company: Covidien, C, P Name of Company: Medtronic Vascular C Name of Company: Omeros Corp. EI Name of Company: Sapheon, Inc. EI Name of Company: Spectranetics, Inc. C Name of Company: QT Vascular EI Name of Company: Vatrix Medical EI Name of Company: W.L. Gore C, P

AB: Advisory Board
C: Consulting Relationship
EI: Equity Interest
GS: Grant Support
P: Proctor or Training Course Sponsorships
SB: Speakers Bureau
SE: Spouse Employee
SO: Stock Options or Positions

Carotid Stenting Without Stroke: How to Achieve the Gold Safety Standard

- What is the "Gold Standard"
- What predicts stroke with carotid stenting
 - Arch and lesion characteristics
 - Patient characteristics
 - Symptomatic status
 - Operator experience
 - Devices and equipment

AHA Council on Stroke 1998 Endarterectomy Guidelines

% Stenosis

Maximum Acceptable Perioperative Death+CVA Rates, %

But these are STANDARD risk patients...

TIA	5.0
Prior CVA	7.0
Restenosis post-CEA	10.0
Contralateral ICA occlusion	14.0

Challenging Arch Anatomy

Difficult Access Arches

CAPTURE Stroke Cohort: Location relative to procedure timing

All strokes (n=168*)

18% of all strokes in CAPTURE were non-ipsilateral

Gray W et al Catheter Cardiovasc Interv 2007; 69: 341-348

High Risk Type C Carotid Lesions

Lesion Predictors of Adverse Events Following CAS-SAPPHIRE WW

Multivariate Predictors of 30-Day MAE (N=4001)

Odds Ratio P-value [95% CI]

Geometry of Target Lesion - Ulcerated	1.57 [1.10, 2.24]	0.012
---------------------------------------	-------------------	-------

Final Target Lesion % Diameter Stenosis	1.02 [1.00, 1.04]
---	-------------------

Arch Type I

Vessel Tortuosity - Moderate

Lesion Calcification \geq 3mm

0.71 [0.49, 1.03] 0.068

- 1.37 [0.91, 2.06] 0.131
- 1.33 [0.82,2.16] 0.241

SAPPHIRE WW Registry data on file

0.045

Total Stroke in High Risk Carotid Stent IDE Trials 2002-2011

30-Day Stroke/Death Rates in U.S. High Risk CAS Post Market Studies

Sapphire Trial Randomized Patients 1-Year Events

Yadav JS et al *N Eng J Med* 2004; 351: 1493-1501

Carotid Artery Stenting: Prospective Randomized Trials vs. CEA

Meta-analysis of 120-day Outcomes from SPACE, EVA-3S and ICSS

	CAS		CEA			Risk ratio (95% CI)		Interaction p value				
	Events	Total	Events		Total					••••••••		
Age (years)		i-arc			2000							
<70	22 (2-5%)	869	30	(3.6%)	843						0.71 (0.41-1.22)	0.0071
≥70	60 (7.0%)	856	34	(3.9%)	865			- (-)	1.78 (1.18-2.68)	0.00/1
Sex												
Male	56 (4.6%)	1230	42	(3.4%)	1232			+	-		1.33 (0.90-1.97)	
Female	26 (5.3%)	495	22	(4.6%)	476		1.7				1.14 (0.66-1.98)	0.66
Type of most recent ipsilateral ischaemic	event before rand	omisatio	n	93.02 - 53								
Retinal ischaemia	7 (2.3%)	310	9	(3-0%)	297	-		•	-		0-74 (0-28-1-97)	
Transient ischaemic attack	31 (5.3%)	589	24	(4-0%)	601			-+-	-		1.32 (0.78-2.22)	0.49
Hemispheric stroke	44 (5.4%)	813	30	(3.8%)	797			-	•		1.43 (0.91-2.25)	10.00
Degree of ipilateral carotid stenosis	100000000000000000000000000000000000000			(876 - 68 -								
Moderate (50-69%)	11 (3.3%)	332	10	(3.1%)	327						1.10 (0-47-2-55)	
Severe (70-99%)	71 (5.1%)	1393	54	(3.9%)	1381			+	-		1.29 (0.91-1.82)	0.73
Contralateral severe carotid stenosis or o	cclusion			050356667				1				
No	62 (4.6%)	1340	44	(3.3%)	1341				-		1.41 (0.97-2.06)	12222
Yes	9 (3.8%)	235	10	(4.3%)	235		<u> </u>	•	-		0-91 (0-38-2-19)	0.37
						<u></u>	- 6					
						0-2	0.5	1	2	5		
						C	EA wors	e (AS wors	e		

Figure 5: Treatment risk ratios of disabling stroke or death within 120 days of randomisation in selected patient subgroups

Data are number or number (%), unless otherwise indicated. Percentages are number of events divided by number of patients. Analysis was by intention to treat. Dots and horizontal bars represent treatment risk ratios and 95% CIs, respectively, within subgroups, with carotid endarterectomy (CEA) as the reference group, on a log scale. Risk ratios and interaction p values (categorical interaction) were adjusted for source trial. Patients with missing subgroup data were excluded from subgroup analysis (for details of missing data see webappendix pp 2–4). CAS=carotid stenting.

CREST: CAS vs. CEA Outcomes as a Function of Age

Primary composite 4-year outcomes as a function of age

Brott TG et al N Engl J Med 2010; 363(1): 11-23

CANOPY vs CREST DS at 30 days by Symptomatic Status

	CANOPY	(N=1200)	CREST (N=1262)			
	Symptomatic (N=335)	Asymptomatic (N=865)	Symptomatic (N=668)	Asymptomatic (N=594)		
Death and All Stroke	5.8%	2.5%	6.0%	2.5%		
All Stroke	5.2%	2.3%	5.5%	2.5%		

CANOPY DS definition: death and all stroke

CREST DS definition: any periprocedural stroke or death or post-procedural ipsilateral stroke

Multivariable Cox Regression Analysis

Variable	Coefficient	Hazard Ratio [95% CI]	P-value
Symptomatic (Yes vs. No)	0.92	2.51 [1.35, 4.68]	0.0038
Multiple stent used	1.17	3.22 [1.26, 8.23]	0.0149

Neither age > 80, or age as a linear variable, were predictors of DS at 30 days.

Carotid Stenting Emboli Protection Systems

POD Meta-analysis Overall 30-day Event Rates

POD Meta-analysis Independent Risk Predictors

Odds of Baseline Characteristics to Predict Composite MACCE

Bersin RM et al Cath Cardiovasc Interv 2012; 80: 1072-1078

POD Meta-analysis Overall 30-day Event Rates

Composite MACCE by Age Group and Symptomatic Status

Bersin RM et al Cath Cardiovasc Interv 2012; 80: 1072-1078

Studies of PODs vs. EPDs

MES by TCD and new embolic lesions by DW-MRI are surrogate markers of embolic events with adequate sensitivity to detect differences between MO.MA and Filters

Author	Schmidt	El Koussy	Montorsi	Bijuklic		
Enrollment year	2002 - 2003	2003	2009 – 2010	2010 - 2011		
Design	Non Rand. MO.MA vs Filter	Non Rand. MO.MA vs Filter	RANDOM MO.MA vs. Filter	RANDOM MO.MA vs. Filter		
# patients	42 (21 + 21)	44 (25 + 19)	53 (26 vs 27)	62 (31 vs 31)		
% symptom.	33% vs 29%	60% vs 52.6%	15% vs 7%	41.9% vs 38.7%		
Risk profile	normal	normal	high-risk, lipid-rich plaque	normal		
Primary FP	TCD MES count 57 vs 196	New DW-MRI lesions 18 vs 43	TCD MES count 16 vs 93	New DW-MRI lesions 45 vs 87		

Carotid Stent Post-Procedural Events By Free Cell Area

Post-procedure to 30-days

vmntomotio 💻 Symptomotic

Bosiers M et al Eur J Vasc Endovasc Surg 2007; 33:135-141

Carotid Stent Design Closed Cell vs. Open Cell

Day 1-30 Events in Symptomatic Patients: 0.3% closed cell 1.3% open cell (N=1864)

Schillinger, M et al Stroke 2008; 39: 905-909

Conclusions

- The "Gold Standards" for CEA outcomes were established by ACAS and NASCET in standard surgical risk patients.
- Clinical factors that increase stroke risk with CAS include: Adverse arch anatomy, lesion ulceration, symptomatic status and patient age.
- Technical factors that increase stroke risk with CAS include: Lack of use of a protection device, pre-dilation prior to protection, and use of multiple stents.
- Symptomatic patients have a 2-fold greater risk of stroke with CEA and CAS using filter EPDs. The use of proximal protection reduces the risk of stroke in symptomatic patients to that of asymptomatic patients.
- The use of closed cell stents may further reduce the overall stroke rates by reducing peri-procedural events in symptomatic patients.