Assessment of In-Stent Restenosis Using Gray-Scale IVUS, VH and OCT

Mechanism of ISR and Tissue Characterization Based on the Data from AMC IVUS Core Lab

Soo-Jin Kang, MD., PhD.

Department of Cardiology University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

CardioVascular Research Foundation

Two Different Mechanisms of ISR Stent Underexpansion

56 Year-Old Male

 9MA Primary PCI for STEMI
 TAXUS 3.0 (28) mm and 3.5(28) mm at the mLAD

9-month F/U angiography

Main Mechanism of ISR at the MLA site

Underexpansion

Aedical Center

Two Different Mechanisms of ISR Intimal Hyperplasia

68 Year-Old Female

■ 1YA stable angina
 →Taxus 3.5 (20) mm at mLAD

5MA effort-related chest pain
1-year F/U angiography

Main Mechanism of ISR at the MLA site Dominant IH

Mechanism of DES-ISR at the MLA Site

Intimal hyperplasia contributed to DES-ISR in 88%

COLLEGE MEDICINE

Mechanism of DES-ISR at the MLA Site in the subgroup with Total Stent Length >28 mm

WVERSITY OF ULSAN

Higher Rate of Underexpansion in Lesions with Longer Stent

Lumen diameter

Vessel Tapering

(mm /10mm)

The property of vessel tapering especially in LADA greater possibility for "occult" focal underexpansion

Serial MLD Changes in 72 Lesions Over 3 Years after BMS Implantation

Early lumen loss at 6 months and subsequent improvement in MLD

Kimura et al. N Engl J Med 1996;334:561-6

Tri-phasic MLD Response

Early restenosis phase until 6 months intermediate-term regression phase late re-narrowing phase beyond 3 years

kimura et al. Circulation 2002;105:2986-91

Serial Changes in %IH Volume over 2 Years

Even though the rate of IH attenuated over time, IH continued to increase beyond 6 months in both DES groups with a modest late catch-up

Late De-Novo Neo-Atherosclerosis

5-year f/u of Palmaz–Schatz

3-year f/u of Palmaz–Schatz

Hasegawa et al. Cathe and Cardiovasc Interv 2006;68:554–8 Inoue et al. Cardiovascular Pathology 2004;14:109–15

CardioVascular Research Foundation

Journal of the American College of Cardiology © 2010 by the American College of Cardiology Foundation Published by Elsevier Inc.

Intravascular Ultrasound Findings in Patients With Very Late Stent Thrombosis After Either Drug-Eluting or Bare-Metal Stent Implantation

30 AMI patients with VLST

	DES	BMS	<i>p</i> -
	(n=23)	(n=7)	value
Mean EEM CSA, mm ²	19.55±6.07	18.31±4.17	0.774
Mean Lumen CSA, mm ²	4.20±1.40	4.73±4.64	0.564
Mean Neointima, mm ²	3.07±1.15	5.03±1.78	0.014
Minimal stent CSA, mm ²	6.15±1.58	7.42±3.77	0.413
Neointima rupture	10 (43.7%)	7 (100%)	0.010

Lee CW et al. J Am Coll Cardiol 2010;55:1936-42

CardioVascular Research Foundation

Neointimal Composition at Various FU Time Overall 117 ISR Lesions with both BMS and DES

>36Mo (n=26)		52.2*	<mark>5.6</mark> *	27.2*	15.0*
	_				
24-36Mo (n=15)		54.9*	<mark>7.1</mark>	<mark>#</mark> 25.8 [*]	12.2*
	_				
12-24Mo (n=12)		62.5		<mark>8.1</mark> 2	2.3 7.3 [#]
	_				
6-12Mo (n=42)		64.5		12.5	<mark>18.5</mark> 4.5
	-				
<6Mo (n=22)		67.2		15.4	14.6 <mark>2</mark> .8

Neointimal content of %NC and %DC significantly increased over time, suggesting neo-atherosclerosis in extended follow-up period

47 BMS-treated ISR

70 DES-treated ISR

UNIVERSITY OF ULSAN

ASAN Medical Center

*p<0.01 and #p<0.05, vs. lesions at follow-up time <6 months

Kang SJ et al. AJC 2010 Accepted

Multivariable Analysis

- Longer follow-up time (β=0.938, p=0.001)
- Older age (β=0.300, p=0.023)
- Male gender (β=5.238, p=0.028)

 \rightarrow associated with %NC at the max %IH sites

Neo-atheromatous degeneration and increase in vulnerability with aging of stent

Kang SJ et al. AJC 2010 Accepted

54/Male ISR with Stable Angina

• 8MA DES at mLAD

71 Year-Old Female

8YA Stable angina →s/p BMS at mLAD
7YA mLAD diffuse ISR → triple anti-platelet
1WA resting chest pain
Cardiac enzyme: normal
Clinical Diagnosis
Unstable Angina

 $MSA = 6.3 mm^2$ $MLA = 2.1 mm^2$

COLLEGE MEDICINE

Medical Center

In-Stent Neo-atherosclerosis with Vulnerable Intima

Virtual Histology

Journal of the American College of Cardiology © 2010 by the American College of Cardiology Foundation Published by Elsevier Inc.

CLINICAL RESEARCH

Vol. 55, No. 1, 2010 ISSN 0735-1097/10/\$36.00 doi:10.1016/j.jacc.2009.08.032

Interventional Cardiology

Appearance of Lipid-Laden Intima and Neovascularization After Implantation of Bare-Metal Stents

Extended Late-Phase Observation by Intracoronary Optical Coherence Tomography

 Neointima transforms into lipid-laden atherosclerotic tissue in extended phase

 Lipid-laden intima frequently has intimal disruption, thrombi and neovascularization

Takano et al. J Am Coll Cardiol 2009;55:26-32

Optical Coherent Tomographic Analysis of In-stent Neo-atherosclerosis in Patients with DES Failure: From In-Stent Restenosis to Very Late Stent Thrombosis

The aim of the study was to assess OCT findings of in-stent neointima in DES-treated restenotic lesions with significant intimal tissue (%IH>50%)

Exclusion : hemodynamic instability, inability of OCT-wire to cross the lesion due to tight stenosis or tortousity, LM or SVG, or angiographically visible thrombi with embolic risk, thrombotic occlusion without intima, ISR with dominant underexpansion

Methods : OCT Definition

Microvessel

TCFA-like neointima

Calcium

Neointimal rupture

Red thrombus

White thrombus

Results

- All 53 lesions with angiographic restenosis after DES implantation contained significant intima (%IH>50%)
- Follow-up time: 35.5 ± 25.3 months (4.1-80.3 months)

Clinical presentation

- Stable angina in 27 (51%)
- Unstable angina in 14 (26%)
- NSTEMI in 4 (8%)
- STEMI in 8 (15%)

DES Restenosis
 Very Late Stent Thrombosis
 (AMI>12 months after stenting)

TCFA-Like Intima in 28 (53%) Lesions

The best cut-off value of follow-up duration to predict TCFA was **19.5** months (AUC=0.73) *Sensitivity 75%, Specificity 68%, PPV 72%, NPV 71%*

OCT Findings According to Clinical Presentation

	Total	Clinical presentation		
	TOLAI	Non-ACS	ACS	P value [†]
Ν	53	27	26	
Lipid-containing neointima, N (%)	48 (91%)	23 (86%)	25 (96%)	0.187
Calcium, N (%)	6 (11%)	2 (7%)	4 (15%)	0.316
Min. thickness of fibrous cap, µm*	107.3±79.5	110(60-200)	60(50-85)	0.028
Incidence of thrombi, N (%)	35 (66%)	13 (48%)	22 (85%)	<0.001
Incidence of red thrombi, N (%)	20 (38%)	3 (11%)	17 (65%)	<0.001
Maximal area of thrombi, mm ² *	1.6±1.5	0.4 (0.3-0.9)	1.7 (1.0-3.6)	0.001
Intimal rupture, N (%)	34 (64%)	15 (56%)	19 (73%)	0.148
Multiple ruptures, N (%)	15 (28%)	5 (19%)	10 (39%)	0.095
Incidence of TCFA, N (%)	28 (53%)	9 (33%)	19 (73%)	0.004
Multiple TCFA, N (%)	8 (15%)	4 (15%)	4 (15%)	0.626

* Median value (inter-quartile range) †Non-parametric, Mann-Whitney test

CardioVascular Research Foundation

OCT Findings According to Follow-up Time

	Total	Follow-up time			
		<19.5 months	≥19.5months	P value [†]	
Ν	53	24	29		
Lipid neointima, N (%)	48 (91%)	21 (87%)	27 (93%)	0.409	
Calcium, N (%)	6 (11%)	1 (4%)	5 (17%)	0.145	
Min. thickness of fibrous cap, µm*	107.3±79.5	110 (60-220)	60 (50-98)	0.016	
Incidence of thrombi, N (%)	35 (66%)	13 (54%)	22 (76%)	0.031	
Incidence of red thrombi, N (%)	20 (38%)	5 (21%)	15 (52%)	0.017	
Maximal area of thrombi, mm ² *	1.6±1.5	0.6 (0.3-1.0)	1.5 (0.7-3.6)	0.020	
Incidence of intimal rupture, N (%)	34 (64%)	13 (54%)	21 (72%)	0.168	
Multiple ruptures, N (%)	15 (28%)	4 (17%)	11 (38%)	0.079	
Incidence of TCFA, N (%)	28 (53%)	7 (29%)	21 (72%)	0.002	
Incidence of multiple TCFA, N (%)	8 (15%)	1 (4%)	7 (24%)	0.043	

CardioVascular Research Foundation

* Median value (inter-quartile range) †Non-parametric, Mann-Whitney test

Frequency of TCFA-Like Intima and Intimal Rupture According to the Clinical Presentation

Frequency of Thrombi

Summary

- TCFA-like neointima, intimal rupture and thrombi were frequent OCT findings in the DES-treated lesions with either ISR or VLST
- In-stent neo-atherosclerosis with highly vulnerable intima over time may be an important common mechanism of DES failure with a broad spectrum of clinical presentations from stable angina to AMI

