Catheter-Based Denervation for Heart Failure

David E. Kandzari, MD, FACC, FSCAI

Chief Scientific Officer
Director, Interventional Cardiology

Piedmont Heart Institute Atlanta, Georgia david.kandzari@piedmont.org

Disclosure

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below

Affiliation/Financial Relationship Company

Grant/Research Support Abbott Vascular, Boston Scientific Corporation,

Medtronic CardioVascular

Consulting Fees/Honoraria Abbott Vascular, Boston Scientific Corporation,

Medtronic CardioVascular, Micell Technologies, Terumo Medical

Major Stock Shareholder/Equity None

Royalty Income None

Ownership/Founder None

Intellectual Property Rights None

Other Financial Benefit None

Efferent Renal Nerve Activation in Heart Failure

- Majority of patients with decompensated heart failure have some degree of renal impairment
- Renal sympathetic efferent activation causes renin release, sodium and water retention, and reduced renal blood flow

Efferent Renal Nerve Activation in Heart Failure

- Hypersympathetic activity is preferentially disproportionate to the kidney and heart
 - Disproportionate increase in renal sympathetic activity reduces GFR and prevents natriuresis
- Angiotensin II may directly mediate central sympathetic activity, initially as a response to decreased cardiac output and later in a positive feedback cycle
- Hypersympathetic activity in HF may stem from reduced aortic and carotid baroreceptor activity
- Increased renal norepinephrine spillover predicts decreased survival and need for transplantation, independent of LVEF and GFR

Contribution of Renal Afferent Nerve Activation in Heart Failure

- Renal afferent activation increases sympathetic tone (renorenal reflex), inducing
 - Renal vasoconstriction
 - Renin secretion
 - Sodium and water retention
 - Increased sympathetic tone to other organs with dense sympathetic innervation (eg, cardiac)
- Afferent activity may be stimulated by proximal tubule adenosine secretion

Proof of Principle: Therapeutic Renal Denervation and Reduction of Central Sympathetic Nerve Activity

Baseline

MSNA: 46 burst/min BP: 155/95 mmHg

No impact on flight/fight "epinephrine" response

No blunting of baroreceptor function

Preserve central sympathetic homeostatic mechanisms

BP: 133/78 mmHg (\sqrt{22/17 mmHg})

12 Month Follow-up

MSNA: 21 burst/min ($\sqrt{-54\%}$) BP: 132/75 mmHg ($\sqrt{23/20}$ mmHg)

MSN

Effects of Increased Sympathetic Tone in Heart Failure on Renal, Cardiac and Peripheral Vasculature

Pilot Study in Heart Failure with Reduced LVEF

- 40 patients at up to 5 international centers
- Inclusion Criteria:
 - Heart Failure patients NYHA Class II or III
 - Renal Impairment Left Ventricular Ejection Function <40%
 - GFR 30 to 75 mL/min/1.73m2
 - Optimal stable medical therapy

Exclusion Criteria:

- Renal artery anatomy must be eligible for treatment as determined by Angiography, and
- History of prior renal artery intervention
- Single functioning kidney.
- Myocardial Infarction, unstable angina pectoris or cerebrovascular Accident within 3 months
- Systolic BP <110mmHg

Pilot Study in Heart Failure with Reduced LVEF Study Assessments

- Left ventricular function by echocardiography at baseline, 6 and 12 months
- Renal function (GFR) at baseline, 1/3/6/12 months
- Subgroup analyses (N=10)
 - Right heart catheterization measures at baseline, 6 and 12 months
 - Renal spillover
 - Heart rate variability
 - MSNA
 - Renal blood flow
 - Holter monitoring for arrhythmias

REACH Pilot Study

FIM evaluation of safety of chronic severe stable heart failure

PI's: Justin Davies & Darrel Francis, Imperial College London

Primary aim: Evaluation of safety of renal denervation in chronic severe stable heart failure

Secondary aims: Technical feasibility of performing denervation in heart failure

Protocol: 7/7 patients, single center, non-blinded safety study

Stable CHF, on maximum medical therapy +/- CRT +/- ICD

Bilateral denervation

7 Day hospital admission with intensive monitoring of hemodynamics

and biochemistry

2-4 weekly review for 6 months

Follow-up: 6 months

Study-close: February 2012

Reports: August 2012

REACH

Assessment of the symptomatic benefit of renal denervation in chronic severe heart failure

PI's: Justin Davies & Darrel Francis, Imperial College London

Primary aim: Evaluation of symptomatic benefit of renal nerve denervation in chronic severe heart failure (6 min walk, Minnesota Heart Assoc. Questionnaire)

Secondary aims: Reduction in hospital admissions

Protocol: 100 patient, randomized, blinded, 3:2 (treatment: sham) study

Stable CHF, on maximum medical therapy +/- CRT +/- ICD

Bilateral denervation

Follow-up: 12 months

Study start: May 2012

Study-close: May 2013

Reports: August 2013

Influence of Renal Denervation on Regression of LVH and Improvement of **Diastolic Function**

Regression of LVH and Improvement of Diastolic Function Relative to BP Reduction Achieved by Renal Denervation

Reduction in LV
mass likely result of
decreased LB
workload <u>and</u>
decreased
sympathetic activity

How Might Renal Denervation Differ From Medical Therapy for Heart Failure?

- Most approved pharma dose are less than that needed to eliminate stimulation of beta and angiotensin II receptors
- RDN may reverse the effects of increased alpha adrenergic tone on renal blood flow, sodium excretion and systemic vasconstriction
- RDN should eliminate release of additional neurotransmitters (eg, neuropeptide Y) that contribute to sympathetically mediated vasconstriction

