Mismatched Disease
: "Do You Want to Treat the Lesion or the Patient?"

Bong-Ki Lee, MD, PhD
Division of Cardiology
Kangwon National University Hospital Chunchon, Korea

Case \#1

- 78/F
- CC: effort angina x 1 month (1 yr ago)
- Risk factors: old age
- Treadmill test
- not performed for s/p THR (Lt hip)

Coronary angiogram 11 Nov, 2009

PCI
 11 Nov, 2009

Pre-dilatation

Sapphire 3.0×15 mm (6 atm)

Stenting

PICO-Elite 3.0×18 mm (12 atm)

Final CAG Successful result

8 months later...

- She complained recurred chest pain, but the pain character was atypical.
We performed follow up CAG.

FIU Coronary angiogram 27 Aug, 2010

We measured FFR

Then, deferred PCI...

Endoscopy

Erosive gastritis \& duodenal ulcers

Gl medication started

- Then the 'chest pain' had been improved.

Case \#2

- 58/F

CC: effort angina x 3 weeks
${ }^{\circ}$ Risk factors: Hypertension, T2DM

- Treadmill test
- Positive at stage 3

Treadmill test

Baseline

Angina at stage 3

Coronary angiogram RCA

Coronary angiogram

Left coronary system

IVUS \& FFR for RCA lesion

IVUS \& FFR for LAD lesion

PCI for LAD Lesion

Pre-dilatation

Sapphire $3.0 \times 15 \mathrm{~mm}$ (6 atm)

Stenting

PICO-Elite $3.0 \times 18 \mathrm{~mm}$ (12 atm)

Final CAG Successful result

KNV 앙원대악교벼ㅇㅝㅕㅕ

Treadmill test follow up

If I Did "Unnecessary PCl"......

- Might experienced PCI related complications
- Restenosis
- Stent thrombosis
- No-reflow
- Coronary perforation
- Access site complication

Anti-platelet therapy must be reinforced
The patient must paid more money...

Summary \& Conclusion

- FFR can be useful as an alternative to stress test in the cath lab to have decision makingtreat or not treat.
- "Start the procedure with FFR, finish the procedure with IVUS" rule seems quite feasible.
- FFR is a useful tool to avoid "unnecessary PCl".

Thankyou! hurn (b)

4 MM 2 TOO SMALL?

FFR $=0.60$

4 MM 2 SUFFICIENT?

10% stenosis
FFR $=0.90$

IVUS cutoff Value Published Data Review

	Nishioka T, JACC 1999	Briguori et al AJC 2001	Takaki et al Cir. 1999	Abizaid et al AJC 1998
	70 lesions	53 lesions	42 pts	86 pts
Cut-off of MLA (mm^{2})	<4.0 (Thallium +)	$\begin{aligned} & <4.0 \\ & (F F R<0.75) \end{aligned}$	$\begin{aligned} & <3.0 \\ & (F F R<0.75) \end{aligned}$	$\begin{aligned} & >4.0 \\ & (C F R>2.0) \end{aligned}$
Sensitivity Specificity	$\begin{aligned} & 80 \% \\ & 90 \% \end{aligned}$	$\begin{aligned} & \hline 92 \% \\ & 54 \% \end{aligned}$	$\begin{aligned} & 83 \% \\ & 92.3 \% \end{aligned}$	Accuracy 92\%
QCA VD (mm) DS (\%)		$\begin{aligned} & 3.08 \pm 0.3 \\ & 52 \pm 11 \end{aligned}$		
MLA (mm²)	3.3 ± 2.3	3.9 ± 2.5	3.9 ± 2.0	4.4土2.0
MVA (mm²)		12.0 ± 4.6		13.2 ± 4.4
Area stenosis\%		65 ± 18	55 ± 24	43 ± 24

New Cut-off Value of IVUS MLA (mm2)

according to different Vessel Diameter

| | FFR $<0.8 />0.8$ | Cut-off | sensitivity | specificity | PPV | NPV | Accuracy | AUC | $95 \% \mathrm{Cl}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Vessel diameter at the MLA site $<3.0 \mathrm{~mm}(\mathrm{n}=38)$ | | | | | | | | | |
| MLA | $7 / 31$ | 1.45 | 71 | 77.4 | 42 | 92 | 76 | 0.730 | $0.562-0.861$ |
| Length | $7 / 31$ | 12.0 | 57 | 83 | 44 | 90 | 78 | 0.682 | $0.511-0.823$ |
| PB | $7 / 31$ | 75.4 | 43 | 94 | 60 | 88 | 85 | 0.654 | $0.483-0.801$ |
| Area stenosis | $7 / 31$ | 66.8 | 86 | 52 | 28 | 94 | 56 | 0.696 | $0.526-0.834$ |

Vessel diameter at the MLA site $\mathbf{3 . 0 - 3 . 5 m m}$ ($\mathrm{n}=53$)

MLA	13/40	1.8	61.5	87.5	61	88	81	0.769	0.633-0.874
Length	13/40	4.9	72.5	84	94	50	80	0.772	0.636-0.876
PB	13/40	74.5	84.6	C7 5	Ac	02	71		0.629-0.871
Area stenosis	13/40	75.8	46						0.528-0.794
Vessel diameter at the MLA site 3.5-4.0mm ($\mathrm{n}=72$									
MLA	18/54	2.15	83						0.736-0.917
Length	18/54	3.57	83	75	54	93	77	0.813	0.704-0.895
PB	18/54	80.2	83	75	54	93	77	0.850	0.746-0.923
Area stenosis	18/54	70.0	89	72	52	95	76	0.824	0.716-0.904

Vessel diameter at the MLA site $\mathbf{> 4 . 0 \mathrm { mm } (\mathrm { n } = 7 3)}$

MLA	$11 / 62$	2.41	91	83	50	98	84	0.874	$0.775-0.940$
Length	$11 / 62$	0.83	91	72.6	37	98	75	0.792	$0.682-0.879$
PB	$11 / 62$	80.7	100	61	31	100	67	0.855	$0.753-0.926$
Area stenosis	$11 / 62$	79.3	55	95	67	92	89	0.770	$0.656-0.860$

