Imaging & Physiology Summit 2010 in Soul

#1. Basics of Image Interpretation: IVUS/VH/OCT

Clinical Application of OCT in Stent Evaluation

Mitsuyasu Terashima, MD, PhD, FACC

Toyohashi Heart Center

MT2

Mitsu, 2005-11-19

Stent implantation

Stent Apposition

Incomplete apposition

After stenting of the mid-LAD with inflation pressure at 10 atm

OCT Image of Implanted stent Just after Deployment

Complete stent apposition (CSA)

✓ Apposition of stent strut to the vessel wall is evaluated by measuring the distance between the strut surface and adjacent vessel surface.

Original Contribution

Accuracy and Reproducibility of Stent-Strut Thickness Determined by Optical Coherence Tomography

Mitsuyasu Terashima, MD, Sudhir Rathore, MD, MRCP(UK), Yasuyoshi Suzuki, BS, Yoshiaki Nakayama, BS, §Hideaki Kaneda, MD, Kenya Nasu, MD, Maoto Habara, MD, Osamu Katoh, MD, Takahiko Suzuki, MD

Jornal of Invasive Cardiology 2009;21:602 605

Fig. 4: Histograms of measurements of individual stents
A: Bx Velocity™ stent, B: Cypher™ stent, C: Express2™ stent, D: Driver™ stent, E: Vision™ stent

Table 1. Measured and Manufacturers' nominal strut thickness

Type of stent	Number	Measured Thickness (mm)	95% CI (mm)	Manufacturer's nominal thickness (mm)	Difference (mm)
Bx- Velocity	42	145 ± 13	141 to 149	140 (0.0055 inch)	+5 ± 13
Cypher	42	152 ± 11	149 to 155	160 (0.0055 inch + polymer)	-8 ± 11
Express	50	129 ± 12	126 to 132	132 (0.0052 inch)	-3 ± 12
Driver	60	88 ± 10	86 to 91	91 (0.0036 inch)	-3 ± 10
Vision	45	84 ± 14	79 to 88	81 (0.0032 inch)	3 ± 14

How to measure?

Factors T Evaluation of Ste raphy Tal MD: Yusuke ato, MD; tical coherence Background 120µm tomography Methods and Γunder various conditions ar n models were examined by uation of stent 160µm apposition. S stent shadow). The precision wire was positioned in the sitioned eccentrically using alues under all conditions ex el wall surface coincided wi **Conclusions** ly with a lower frame acquisi ne stent surface should be me

Fates of Incomplete Apposition

Should we treat all of the incompletely apposed struts?

Although in-stent thrombus is common findings in DES, late stent thrombosis is a rare event.

Futhermore, there is no significant clinical data for relationships between baseline ISA and late stent thrombosis.

Then, is there any acceptable indication for treatment of ISA?

Flap / Dissection

IVUS

Chronic Vascular Responses to Coronary Stenting by Optical Coherence Tomography

Neointimal Coverage of Stent struts

IVUS and OCT image of SES at 3-month follow-up

✓ OCT provides detailed visualization of the individual stent struts and a thin neointimal layer over DES struts that IVUS can not detect.

Classification of Neointimal Coverage ~ Morphology ~

Intimal Stent Strut Coverage Type 1 & 2

Intimal Stent Strut Coverage Type 3

Intimal Stent Strut Coverage Type 4

Definition of Neointimal Coverage of Struts

Intimal Coverage of unapposed Stent Strut

Interventional Rounds

Optical Coherence Tomography: High Resolution Intravascular Imaging to Evaluate Vascular Healing after Coronary Stenting

Giulio Guagliumi, MD and Vasile Sirbu, MD

Fig. 2. Classification of strut apposition by OCT. Frames a-e represent Types I, II, IIIa, IIIb, and IV, respectively. (a) Totally embedded strut (Type I). (b) Embedded subintimally without disruption of lumen contour (Type II). (c) Completely embedded with disruption of lumen contour (Type IIIa). (d) Partially embedded with extension of strut into lumen (Type IIIb). (e) Complete strut malapposition (blood able to exist between strut and lumen wall) (Type IV).

Classification of Neointimal Coverage of Strut by Kobe University

- (1) Well apposed with neointima
- (2) Well apposed without neointima
- (3) Malapposed with neointima
- (4) Malapposed without neointima
- (5) Side branch orifice with neointima
- (6) Side branch orifice without neointima

注: Malapposition: Incomplete Stent Apposition (ISA)

Fig. Images of stent in chronic phase

Is the scientific consensus of OCT findings obtained?

How about this? No1

How about this? No2

Comparison of Neointimal Growth between Paclitaxel-Eluting Stent, Sirolimus-Eluting Stent, and Bare-Metal Stent

Frequencies of Covered Strut / Stents

CASE: BMS, SES and PES ~ 4-month f/u ~

Distal

CASE: BMS, SES and PES

 \sim 4-month $f/u \sim$

BMS Cypher Taxus

Characteristics of Neointima ~ intensity, pattern ~

Usual Neoitima of BMS

Common findings in 1st generation DES

Toyohashi Heart Center

Heterogeneous neointima of 1st generation DES

Layered

PES

SES

Mosaic

SES

59 y.o. male

Case 2: OCT at 4 months fu

Specimen Retrieved by DCA

Toyonasını meari Cenier

Anomalous pattern of Neointima

Peri-stent staining

Peri-strut ulcer like apperance / Peri-strut halo

Toyohashi Heart Center

➤ Neointima following stent implantation have various patterns of morphology or characteristics (intensity, etc).

Question?

Which patterns are safe (protective for stent thrombosis)?

Which patterns are dangerous?

Which patterns are within the acceptable range?

Summary

- ✓ OCT provides various information and new aspects of implanted stents.
- ✓ Unfortunately, consensus of definition of OCT findings has not been obtained. Therefore, interpretation of the study using OCT requires attention.
- ✓ Lager population study should be required to clarify the relationships between OCT findings and clinical outcomes after achieving consensus standard of OCT findings.