Hands-On Session: Core Lab Analysis

Gary S Mintz, MD

Cardiovascular Research Foundation New York City

先

Stented Artery

Intimal hyperplasia Plaque+media

Proximal Reference

Lesion

 SiteDistal Reference

$E E M C S A=20.4$
Lumen CSA $=9.7$
Max Iumen diam = 3.7
MLD $=3.1$
$P+M C S A=10.7$
Eccentricity $=1.0 / 0.3$
Plaque burden $=0.52$
Arc of $\mathrm{Ca}=60$

EEM CSA $=21.6$
Lumen CSA $=4.5$
Max Iumen diam $=32.8$
MLD $=2.3$
P+M CSA $=17.1$
Eccentricity $=3.0 / 0.1$
Plaque burden $=0.79$

EEM CSA = 13.3
Lumen CSA $=8.9$
Max Iumen diam = 3.6
MLD $=3.0$
$P+M C S A=4.4$
Eccentricity $=0.6 / 0.2$
Plaque burden $=0.33$

Average Reference EEM CSA $=16.9$
Remodeling Index $=1.3$
Average Reference Lumen $C S A=9.3$
Area Stenosis $=52 \%$

CRF off-line analysis "Case report form"

Cardiovascular Research Foundation
TRIAL

Intra-Vascular Ultra-Sound Case report form

IVUS CRF

INDEX - Post STENTING PROCEDURE

- IVU:

11 pages!!!

- What you analyze and how you analyze it depends on the question that you want to answer.
- It is important to have the question or hypothesis in mind before you start your analysis and, even better, before you collect your data
- IVUS predictors of ischemia or events
- IVUS predictors of restenosis or stent thrombosis
- Mechanisms of restenosis
- Progression/regression
- Pre-specify the analysis and definitions. This is especially important in unblinded and nonrandomized studies.
- Analysis software
- Commercial systems
- Freeware/shareware. . . NH Image (or ImageJ for Mac)
- Understand the limitations of your project before you start
- The more you plan in advance, the less you will have to repeat before you are finished.
- Read the literature. Standards documents exist. Read them and follow their guidelines.

VERDICI\&
 VERDICT Pilot

Vascular Evaluation for Reva sc ula rization: Defining Indic ations for Coronary Inerapy
Prospective, multic enter, non-randomized, non-blinded study in 300 intermediate coronary lesions
(DS $\geq 40 \%$ - <80\%, RVD $2.75-4.0 \mathrm{~mm}$)
FFR and VH-IVUS assessment of all lesions
10 sites in US and EU; Sponsor: Volcano Corp.

Study Endpoints and Objectives:

1. Examine concordance between FFR and VH-IVUS parameters
2. Establish IVUS values for MLA/length/volume to predict ischemia (ROC)
3. ? Incremental correlative value of fibroatheromas for ischemia
4. Inform a large-scale, randomized trial

VERDICT Randomized Trial

Patients undergoing PCI with one or more additional intermediate lesions ($\geq 40 \%-<80 \%$) in a vessel with RVD $2.75-4.0 \mathrm{~mm}$

Selective interrogation and proscribed deferral

Angiographic guidance

FFR
 guidance

1 year follow-up
Endpoints: MACE, cost-effectiveness
Powered for superiority of both FFR and VH-IVUS vs. angio ($\alpha=0.025$)

Assessment of Predictors of Thrombosis \& Restenosis

	DES Thrombosis	DES Restenosis
Underexpansion	-Fujii et al. J Am Coll Cardiol 2005;45:995-8) -Okabe et al., Am J Cardiol. 2007;100:615-20 -Liu et al. JACC Cardiovasc Interv. 2009;2:428-34 - Choi et al. Circulation Cardiovascular Interventions (in press)	-Sonoda et al. J Am Coll Cardiol 2004;43:1959-63 -Hong et al. Eur Heart J 2006;27:1305-10 -Doi et al JACC Cardiovasc Interv. 2009;2:1269-75 -Fujif et al. Circulation 2004;109:1085-1088
Edge problems (geographic miss, secondary lesions, large plaque burden, etc)	-Fujii et al. J Am Coll Cardiol 2005;45:995-8) - Okabe et al., Am J Cardiol. 2007;100:615-20 -Liu et al. JACC Cardiovasc Interv. 2009;2:428-34 - Choi et al. Circulation Cardiovascular Interventions (in press)	-Sakurai et al. Am J Cardiol 2005;96:1251-3 -Liu et al.Am J Cardiol 2009;103:501-6 -Costa et al, Am J Cardiol, 2008;101:1704-11

Impact of lesion length and final minimum stent area (MSA) on restenosis

No actual observations in this range

	ST	No ST	P
Reference segment			
Most normal looking			
Lumen CSA, mm		9.2	9.3
EEM CSA, mm²	14.4	15.3	0.7
Plaque burden, \%	41.7	37.0	0.3
Most diseased			
Lumen CSA, mm²	3.5	5.9	<0.001
EEM CSA, mm²	13.5	12.2	0.8
Plaque burden, \%	67.5	49.5	<0.001
Stent			
MLA slice			
Stent CSA, mm²	6.3	7.1	0.5
Lumen CSA, mm²	4.4	6.7	0.013
MSA slice			
Stent CSA, mm²	6.3	7.1	0.3
<5.Omm			

Assessment of Mechanisms of Restenosis

- Identify the site of the minimum lumen CSA at follow-up because this defines restenosis. Then "go backwards" to identify the same crosssection post-PCland pre-PCI
- Conversely, it is not correct to identify the site of the minimum lumen CSA pre-PCI and "go forward" to indentify the same cross-section postPCI and at follow-up. This may not represent the restenosis process.
- The MLA migrates from pre-PCI to post-PC to follow-up.

What measurements are important?

Non-stented lesions	Stented lesions	Stent edges
$\Delta E E M$	Δ Stent	Δ EEM
Δ Lumen	Δ Lumen	Δ Lumen
Δ P\&M	$\Delta I H$	Δ P\&M
	$\Delta E E M$	
	Δ P\&M	
	Δ Malapposition	

anmen

Volumetric analysis and planar ($\mathrm{mm} \times \mathrm{mm}$) analysis are complementary

\%IH in various DES trials

\%IH

Serial edge analysis in TAXUS-II

Proximal edge

Stent

$p=0.0003 \quad p=0.002$
$p<0,0001$

Location of 273 ruptured plaques in 158 patients with ACS and 48 patients with stable angina and
 \# of arteries three vessel IVUS

40
35
30
25
20
15
10
5
0
-LAD (n-128)
TCX ($\mathrm{n}=38$)
-RCA (n-81)

- LAD (n-143)

पLCX (n-40)
-RCA (n-90)

Hong et al J Am Coll Card 2005;46:261-5

ACC CLINICAL EXPERT CONSENSUS DOCUMENT

American College of Cardiology

Clinical Expert Consensus Document on
Standards for Acquisition, Measurement and
Reporting of Intravascular Ultrasound Studies (IVUS)
A Report of the American College of Cardiology
Task Force on Clinical Expert Consensus Documents
Developed in Collaboration with the European Society of Cardiology
Endorsed by the Society of Cardiac Angiography and Interventions
WRITING COMMITTEE MEMBERS GARY S. MINTZ, MD, FACC and STEVEN E. NISSEN, MD, FACC, Co-Cbairs

WILLIAM D. ANDERSON, MD, FACC
STEVEN R. BALLEY, MD, FACC
RAIMUND ERBEL, MD, FESC, FACC*
PETER J. FITZGERALD, MD, PHD, FACC FAUSTO I PINTO, MD, PhD, FESC, FACC
\qquad

$$
\begin{array}{r}
\text { TA } \\
\text { ROBERT A }
\end{array}
$$

TASK FORCE MEMBERS ROBERT A. O'ROURKE, MD, FACC, Chai

JONATHAN ABRAMS, MD, FACC
JONATHAN ABRAMS, MD,
ERIC R. BATES, MD, FACC ERIC R. BATES, MD, FACC
BRUCE R. BRODIE, MD, FAC BRUCE R. BRODIE, MD, FACC
PAMELA S. DOUGLAS, MD, FACC GABRIEL GREGORATOS, MD, FACC

KENNETH ROSENFIELD, MD, FACC
ROBERT J. SIEGEL, MD, FACC
E. MURAT TUZCU, MD, FACC
paUl G. YOCK, MD, FACC

Use wellestablished greyscale IVUS
 definitions and measurements

Don't re-invent the wheel!

MARK A. HLATKY, MD, FACC
JUDITH S. HOCHMAN, MD, FACC
SANJIV KAUL, MBBS, FACC
CYNTHIA M. TRACY, MD, FACC
DAVID D. WATERS, MD, FACC
RS, Jr., MD, MACC

III. Equipment for IVUS Examination... . 4 . 1480 B. Electronic Systems $\quad 1$| 1480 |
| :--- |
| | B. Electronic Systems .--

IV. IVUS Antifacts...
A. Non-Uniform Rotational Distortion (NURD)
A. Non-Uniform Rotational Distortion (NURD) ${ }_{1}$ 1480
and Motion Artifact............
B. Ring-Down, Blood Speckle, and $\quad 1480$
C. Near Field Artificats. O .iquit, Eccentricty, and Problems
C. Obliquity, Eccentricity, and Problems

| D. $\begin{array}{l}\text { of Vessel Curvature } \\ \text { Problem of Spatial Orientation... } \\ \end{array} \quad 1481$ |
| :--- | :--- | :--- |

V. Controls for Image Acquisition................. 1481

V1 H O. Ma 1432

TABLE OF CONTENTS


```
Intervention
Clinical expert consensus document on standards for
acquisition, measurement and reporting of intravascular
ultrasound regression/progression studies
Gary S. Minta', MD; Hector M. Garcia-Garcia'), MD, MSCi Stephen I. Nichollstst, MBBS, PhD; Neil I. Weissman', MD; Nico Bruining². MD, PhD; Tim Crowet, BS; Jean-Claute Tardir, MD; Patrick W. Serruys \({ }^{\text {² }}\), MD, Pho
```


Rationale for a consensus document

\qquad

 Vexpese exnates b xtive max uhasto prowten

 Cincar truh to mess precevion nod regrswan of

 coronary angegeraphy and carocotid Intimal-medial thiccness by reguatory authorites. The ablity to generate high-resolution imaging of the entire thickness ot the cororayy arery wall permis evivatanot the entire burden od athe eosclerodec ppaque.

Equipment

 of imagng splens savibble among instutuons and within each Tisk that an indowiual subject is imseed with outerent sssems at ditterent ime ponits. 111 s strical that every possbibe effort s made to ensure that an indwastual is is imgesed with the same equipment (catheers and consoles and pultback devives) tor baseline and tolow-up studies.


```
7%
```

- Use the absolute change in \% atheroma volume of a >30mm long segment with well-defined proximal and distal fiduciary points as the primary endpoint
- Even though the most diseased subsegments contain the largest mean plaque burden, do not use for the primary endpoint:
- No consistent proximal and distal fiduciary points
- MLA, maximum plaque burden, and the most-diseased segment can shift during follow-up
- variability increases when the segment length is short

Eur Intervention

Tissue characterisation using intravascular radiofrequency data analysis: recommendations for acquisition, analysis, interpretation and reporting
Héctor M. Garcia-Garcia', MD, MSe; Gary S. Mintz ${ }^{2}$, MD, FACC; Amir Lerman', MD, FACC; D. Geoffrey Vinet ${ }^{4}$ PhD: M. Paulina Margolis ${ }^{4}$, MD, Pho. Gerrit.Anue van Es ${ }^{3}$, PhD Marie-Angèle M. Morels ${ }^{5}$, BSc; Anuja Nair ${ }^{4}$, PhD; Renu Virmanis. MD. FACC

kerwors mave notem
Alathonevy date

Abstract

Covmpondis near app
Cuat pexicemopdewinumio

IPCR

Thin-cap FA Thick-cap FA

Pre-specify the definitions

Impact of Different Definitions on the Interpretation of Coronary Remodeling Determined by Intravascular Ultrasound
 Alan C. Young.' wo, Gerard Pastorkamp. ${ }^{23}$, Mo, Poter J. Fitzgerald,' wo,
and Paul G. Yock," wo

Key wertra atherosterowic corocay diwesse attranorict

introduction

surining lumen sime in de nowo stherockerosis 11.21 or theravasular ulrasound dve5) sudies have demon- in vessels after interwn (i) (3-3). Recent sudies have

```
gai Cersoc, sumbodi. Callomia 
```



```
pow wave=unaw
```


c.spos mior that, he

