

Keimyung University Dongsan Medial Center NAM, Chang-Wook MD, PhD

When to use FFR

FFR can bring all together: integration of physiology with anatomy during cardiac catheterization

Kleiman NS. JACC 2011:58:1219

Usually not indicated

FFR in nonculprit lesion in ACS

JACC interv 2010;3:1274

Korean FFR registry

Only FFR-guided decision made 1155 patients

FFR in UA or NSTEMI: FAME

	UA or NSTEMI			SA		
	Angiography (n = 178)	FFR (n = 150)	p Value	Angiography (n = 318)	FFR (n = 359)	p Value
No. of indicated lesions/patient	2.6 ± 0.8	2.7 ± 1.0	0.61	2.8 ± 0.9	2.8 ± 1.0	0.54
Procedural success rate	97	98.4	0.32	96.4	97.6	0.23
Drug-eluting stents used/patient	2.9 ± 1.1	1.9 ± 1.5	< 0.01*	2.8 ± 1.2	2.0 ± 1.4	< 0.01*
Procedure time, min†	71 ± 48	69 ± 35	0.72	69 ± 41	71 ± 46	0.54
Contrast agent used, ml	308 ± 134	269 ± 139	0.01*	299 ± 124	273 ± 130	0.08
GP IIb/IIIa inhibitor	31 (17)	24 (16)	0.77	45 (15)	40 (11)	0.24
Hospital stay at baseline admission, days	4.6 ± 4.2	4.5 ± 4.7	0.76	3.2 ± 2.9	3.0 ± 2.5	0.42

In patients with ACS assigned to FFR-guidance group, lesser stent and contrast was used than in those assigned to angiography guidance

Keimyung University, Korea

Sels JW et al. JACC interv 2011;4:1183

FAMOUS NSTEMI

Treatment strategy Defer to Medical Therapy 12 months outcome

FFR changed the treatment strategy in 21.6% of patients compared to angiography alone. FFR-guided group resulted in 9.5% absolute reduction in revascularization compared to angiography alone

When to use FFR

Use FFR in the stabilized lesions

Not indicated acute infarct related lesions

OCT Role in PCI

Pre -Procedure

- Device selection
- Under Construction Decision of optimal strategy
- Evaluation of plaque composition

During -Procedure

Determination of stent size Determination of landing zone Role of landmark

Post -Procedure

- Stent optimization
- Detection of ISA
- Detection of edge injury

Pre-PCI Quantitative Measurement

63YO/M, NSTEMI

Post-PCI Quantitative Measurement

63YO/M, NSTEMI

OCT and IVUS Images of Stented Lesions

Keimyung University, Korea

Kubo T, et al, JACC Img. 2008 1:475–84

How to integrate OCT & FFR

FFR-guided decision making for whether treat or not, and where to treat

OCT-guided decision making for how to treat

Target lesion selection, Device selection,Stent selection, Procedure selection, etc

OCT (and FFR)-guided post procedural evaluation

Result assessment, Additional procedure decision, Prognosis expectation, etc

Case summary

48 YO / Male

- C/C Effort induced Chest Pain
- Effort Induced Chest pain. (Radiating to neck) for 5months
- Risk Factor Ex-Smoker (15PY), DM / HTN (-/-)

Baseline studies

TTE

Normal LV systolic function Diastolic dysfunction (GII) EF 64%

Coronary CT

Trans-Radial, 6fr

OCT

PCI for RCA

OCT

CAG, FFR, & OCT

PCI for LAD

Take Home Message

Keingung University Korea

CAG, FFR, & OCT

PCI for RCA

PCI for LAD

Integration of FFR & OCT-guided decision making can help to find the best option before, during, and after PCI.