Assessment of stent edge dissection by FFR

2015. 4. 30 Eun-Seok Shin, MD,PhD

Division of Cardiology Ulsan University Hospital University of Ulsan College of Medicine

Case 1: M / 61 years

Chest pain on exertion a week ago

Risk Factors: Hypertension (+) Dyslipidemia (+)

Stenting at pLAD

angioplasty

DES 3.5/38mm

Coronary angiography after stenting

FFR after stenting

FFR:0.97 → 0.89

9 months follow-up

Case 2: M / 78 years

Chest pain on exertion a week ago

Risk Factors: Hypertension (+) Dyslipidemia (+)

Treadmill test (+)

Stenting at LAD

Balloon angioplasty Stenting DES 3.0 x 38 mm

FFR after stenting

FFR: 0.80 → 0.65

Angiography Review

Post-stent IVUS

Pullback FFR: 0.65 → 0.89

Δ FFR 0.24

Additional Stenting at ED

DES 2.75 x 14 mm

FFR after additional stenting

FFR: 0.80→ 0.65

FFR: 0.90→ 0.80

Background

• Incidence of ED after PCI

- Angiography: ~6%
- IVUS and OCT: ~24%

 Stent ED detected angiographically have been associated with increased MACE and stent thrombosis

Functional assessment has not been studied yet.
 → Is FFR-guided management effective?

 To investigated the relationship between FFR and the angiographic type of stent edge dissections

 To assess the use of FFR-guided management for edge dissection

Study population

Patients enrolled from 3-vessel FFR trial (NCT01621438)

50 patients (51 dissections) out of 989 cases

• Inclusion: lesions with ED seen after stent implantation and corresponding FFR measurement

• ED was classified as types A to F

 Additional stent implantation for ED was operator dependent and based on the angiographic severity and FFR value

Coronary Artery angiographic changes after PTCA: Manual of Operations NHBLI PTCA Registry 985-6:9

A

В

С

D

E

F

Study results

Patient Demographics , n (%)			Lesion characteristics			
	Age, years	61.3 ± 9.5	Lesion type	B2 or C	38 (74.6)	
	Male	37 (74)	Stent	Diameter, mm	3.1 ± 0.4	
	Hypertension	31 (62)		Length, mm	31.4 ± 12.8	
	Diabetes	19 (38)		Pressure, atm	11.4 ± 3.2	
	Hypercholesterolemia	24 (48)	Edge dissectio	Edge dissections		
	Current smoking	10 (20)	Vessel	LAD	31 (60.8)	
	Family history of coronary disease	8 (16)		LCX	8 (15.7)	
	Prior myocardial infarction	2 (4)		RCA	12 (23.5)	
	Prior PCI	9 (18)		Provimal stent	13 (25 5)	
Clinical presentation, %			_	Distal stent	38 (74.5)	
	Stable angina	26 (52)				
	Unstable angina	18 (36)				
	Acute myocardial infarction	6 (12)				

Angiographic & QCA findings

- Type A: 47.1% (n=24)
- Type B: 41.2% (n=21)
- Type C: 2.0% (n= 1)
- Type D: 9.8% (n= 5)

	A	В	С	D	p value
	(n = 24)	(n = 21)	(n = 1)	(n = 5)	
Proximal RD, mm	2.97 ± 0.40	2.94 ± 0.53	2.34	2.67 ± 0.42	0.290
Distal RD, mm	2.49 ± 0.56	2.50 ± 0.50	1.75	1.81 ± 0.30	0.022
MLD, mm	2.19 ± 0.43	2.10 ± 0.61	1.42	0.77 ± 0.44	0.002
DS, %	17.2 ± 8.4	22.7 ± 13.8	26.0	64.8 ± 17.4	0.002
LL, mm	7.1 ± 2.2	7.8 ± 3.8	15.0	17.0 ± 5.2	0.005
FFR	0.87 ± 0.09	0.86 ± 0.07	0.72	0.57 ± 0.08	0.002

Treatment and clinical outcomes

- No Tx: 78.4% (n=40)
- Additional stents: 21.6% (n=11)
- Type A & B:17.8% had FFR ≤ 0.8 and 50% of them received additional stents
- Type C & D: All had FFR ≤ 0.8 and received additional stents

	FFR ≤ 0.8		FFR > 0.8		
	No treatment	Additional	No treatment	Additional	
		stenting		stenting	
	(n = 4)	(n = 10)	(n = 36)	(n = 1)	
Dissection type					
A	2	1	21	0	
в	2	3	15	1	
c	0	1	0	0	
D	0	5	0	0	

ED characteristics

- ED at distal stent edge: 74.5% vs. proximal edge: 25.5%
- Lesions with additional stents had:
 FFR ≤0.8, DS >50%, and/or LL >15mm
- Main concern lies with
 - Types A and B with FFR ≤ 0.8

Type B stent ED with high FFR

 Type B ED with FFR >0.8
 → No Tx

Type A stent ED with low FFR

Type A, but FFR ≤ 0.8 & pressure step-up, additional stent \rightarrow FFR 0.84

 FFR correlates well with the angiographic type of ED.

Severe ED (types C & D)

 Angiographic findings are sufficient for treatment

• Mild ED (types A & B)

 FFR-guided management may help the decision on further treatment

Contents lists available at ScienceDirect

International Journal of Cardiology

journal homepage: www.elsevier.com/locate/ijcard

Assessment of stent edge dissections by fractional flow reserve

CARDIOLOGY

Ju-Hyun Chung ^{a, 1}, Soe Hee Ann ^{a, 1}, Bon-Kwon Koo ^b, Chang-Wook Nam ^c, Joon-Hyung Doh ^d, Gillian Balbir Singh ^a, Hyung Il Kim ^e, Eun-Seok Shin ^{a,*}

^a Division of Cardiology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea

^b Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea

^c Department of Internal Medicine, Keimyung University College of Medicine, Dongsan Medical Center, Daegu, South Korea

^d Division of Cardiology, Inje University Ilsan Paik Hospital, South Korea

e Suntech Research Center, Seoul, South Korea

ARTICLE INFO

Article history: Received 22 September 2014 Received in revised form 23 February 2015 Accepted 3 March 2015 Available online 4 March 2015

Keywords: Stent edge dissection Fractional flow reserve Drug eluting stent

ABSTRACT

Backgrounds: Edge dissections after intervention have been studied with imaging techniques, however, functional assessment has not been studied yet. We investigated the relationship between fractional flow reserve (FFR) and the angiographic type of stent edge dissections and tried to assess the use of FFR-guided management for edge dissection.

Methods: 51 edge dissections assessed by FFR were included in this prospective observational study. FFR was measured for each type of edge dissection and compared with quantitative coronary angiographic findings. Clinical outcomes were evaluated based on FFR measurements.

Results: Edge dissections were classified as type A (47.1%; 24/51), type B (41.2%; 21/51), type C (2.0%; 1/51) and type D (9.8%; 5/51). Mean FFR in type A dissection was 0.87 ± 0.09 , in type B 0.86 ± 0.07 , in type C 0.72 and in type D 0.57 ± 0.08 . All type C and D dissections (6/51) had FFR ≤ 0.8 and were treated with additional stents. Among the 45 type A and B dissections, 8 had a FFR ≤ 0.8 (17.8%), and 50% received additional stenting. All dissections with FFR >0.8 were left untreated except one long dissection case. There was no death, myocardial infarction or target lesion revascularization during hospitalization or the follow-up period (median 152 days; IQR 42–352 days).

Conclusions: FFR correlates well with an angiographic type of edge dissection. Angiographic findings are sufficient for deciding the treatment of severe dissections such as types C and D, while FFR-guided management may be safe and effective for mild edge dissections such as types A and B.

© 2015 Elsevier Ireland Ltd. All rights reserved.