Pre- and Post-Stenting IVUS Assessment of Left Main Disease

Soo-Jin Kang, MD., PhD.

University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Disclosure

I have nothing to disclose

Pre- and Post-PCI Assessment Left Main Bifurcation

Pre-PCI "LM Stenosis Severity" Anatomical vs. Functional Severity

How to Assess SB Ostium Pre-PCI?
Assessment of SB Compromise

Treatment strategy (deferral vs. revascularization) should be based on "Functional significance"

Author	Comparison	Results	р
Lindstaedt ¹	CABG (FFR< <mark>0.75</mark>) vs. Medical (≥0.80)	4-year Survival 81% vs. 100% MACE-free 66% vs. 69%	NS
Jasti ²	CABG (FFR< <mark>0.75</mark>) vs. Medical (≥0.75)	38-month Survival 100% vs. 100% MACE-free 100% vs. 90%	
Courtis ³	Revasc (FFR< <mark>0.75</mark>) vs. Medical (≥ <mark>0.80</mark>)	14-month MACE 7% vs. 13%	NS
Bech⁴	Revasc (FFR< <mark>0.75</mark>) vs. Medical (≥ <mark>0.75</mark>)	29-month Survival 100% vs. 97% MACE-free 83% vs.76%	NS
Hamilos⁵	CABG (FFR< <mark>0.80</mark>) vs. Medical (≥0.80)	5-year Survival 85% vs. 90% MACE-free 74% vs. 82%	NS

¹Am Heart J 2006;152:156, ²Circulation 2004;110:2831–6, ³Am J Cardiol 2009;103:943-9 ⁴Heart 2001;86:547-52, ⁵Circulation 2009;120:1505-12

IVUS Criteria

To identify Functionally Significant LM Stenosis

LITRO Study

Prospective application of predefined IVUS criteria for revascularization of intermediate LM lesions:

2-Year Outcome of Deferred Lesions with MLA >6mm²

2-Year Outcome of Deferred vs. Revasc

An MLA \geq 6mm² is a safe value for deferral

QCA ≠ IVUS = FFR 55 Year-Old Male Unstable Angina

CardioVascular Research Foundation

$QCA \neq IVUS = FFR$ Distal LM LM ostium 61 / Male **Stable angina LM FFR=0.80 Thallium – Normal** Negative remodeling at LM ostium MLA= 6.5 mm²

QCA = IVUS **/** FFR 47/M Stable angina 50/M Stable angina

Pitfalls of LM FFR

 Combined LAD/LCX stenosis is so common, which may increase the LM FFR

The influence of SB lesion on LM FFR will depend on severity of distal stenosis, even more, on the vascular territory supplied by the distal lesion

IVUS-MLA Predicting LM FFR< 0.80</th>Pure LM lesion of DS 30-80%, exclude distal stream diseaseNon-LMPure LM Disease

100

80

60

40

20

0

0

Sensitivity

Sensitivity=90% Specificity=60% PPV=37% Sensitivity 83% Specificity 83% PPV 83%

Cut-off 4.5mm²

95% CI=0.759-0.960

100-Specificity

60

80

100

AUC=0.90

40

20

Morphologic Simplicity of Pure LM Lesion uniformly large vessel, short lesion length, lack of sidebranch

CardioVascular Research Foundation

COLLEGE MEDICINE

Medical Center

MLA-FFR Mismatch in 32%

With a lower specificity, 60% of patients may undergo unnecessary revascularization procedure

ASAN Medical Center

Oviedo et al. Circ Cardiovasc Interv 2010;3:105-12

MLA criteria in isolated LM disease cannot be applied to all LM bifurcations. It suggests functional impact of *LM MLA*, were it not for the distal stream disease or if the distal stenosis were fixed

2nd Generation OCT in Distal LM Disease

> **Better Resolution More Meticulous**

CardioVascular Research Foundation

Pre- and Post-PCI Assessment Left Main Bifurcation

 Pre-PCI "LM Stenosis Severity" Anatomical vs. Functional Severity

How to Assess SB Ostium Pre-PCI?
Assessment of SB Compromise

Treatment strategy of LM bifurcation depends on disease severity of side branch ostium

Park et al. TCT 2010

CardioVascular Research Foundation

Use of Pre-PCI SB IVUS vs. SB FFR in LM Bifurcation

S	B-	V	US	

 useful to assess the Advantage anatomical severity MLA, PB, remodeling

MLA-FFR mismatch
 Pitfalls
 No MLA criteria of SB
 Low feasibility

SB FFR

 functional significance in isolated SB stenosis, not in true bifurcation lesions

 Affected by proximal or distal stenosis

After MB stenting, SB geometry usually changed

Two Xience **Mini-Crush**

LCX pullback

LAD pullback

ASAN Medical Center

LCX pullback

LAD pullback

9.6 mm, 1 mm/div

Plaque Burden of SB Ostium Measured by MB-Pullback is Only Moderately Reliable

LCX-pullback were available only in 50% pre-stenting and 40% post-stenting due to technical difficulty, which may be realistic in clinical practice

> ASAN Medical Center

Pre- and Post-PCI Assessment Left Main Bifurcation

 Pre-PCI "LM Stenosis Severity" Anatomical vs. Functional Severity

How to Assess SB Ostium Pre-PCI?
Assessment of SB Compromise

LCX FFR=0.90

LCX-MLA 8.4mm²

LCX-MLA 8.3mm²

Changes in LCX Ostial Geometry After a Single Stent Cross-over

In a minority, plaque redistribution may be superimposed on carina shift to contribute to the further lumen loss at the ostial LCX

QCA-DS vs. IVUS-MLA after LM Cross-over

Kang et al. Circ Cariovasc Interv 2011 Accepted

Use of IVUS vs. FFR After LM Cross-over

	SB-pullback IVUS	SB FFR	
Advantage	 Confirm the anatomical compromise and MLA loss Mechanism of SB jailing 	 Confirm the functional SB compromise 	
Pitfalls	 MLA-FFR mismatch No MLA criteria Low feasibility 	Minority - not feasible	

Summary

- MLA is an anatomical factor reflecting functional significance of stenosis, but cannot replace LM FFR
- IVUS provides precise mechanism of SB compromise
- Anatomical compromise may "not always" reflect functional compromise. Thus, functional significance should be evaluated by SB FFR post-stenting
- IVUS-FFR play a complementary role in making a decision for initial treatment strategy and optimize PCI

