In-Stent Neoatherosclerosis as a Mechanism of Stent Failure

Soo-Jin Kang MD., PhD.

University of Ulsan College of Medicine, Heart Institute Asan Medical Center, Seoul, Korea

Disclosure

I have nothing to disclose

Evolving Neointima after BMS Implantation Histologic and Angioscopic Evidences

Tri-phasic Luminal Response Extended Follow-up Study 7-10 years

Traditionally, intimal hyperplasia has been believed to be stable with an early peak and a late quiescent period

> *Kimura et al. N Engl J Med 1996;334:561-6 Kimura et al. Circulation 2002;105:2986-91*

CardioVascular Research Foundation

Farb et al. Circulation 2004;110:940-7

Pathologic Definition of "Neoatherosclerosis"

Peri-strut foamy macrophage clusters with or without calcification, fibroatheroma, and ruptures with thrombosis in in-stent neointima

5-year f/u of Palmaz–Schatz

3-year f/u of Palmaz–Schatz

Hasegawa et al. Cathe and Cardiovasc Interv 2006;68:554–8 Inoue et al. Cardiovascular Pathology 2004;14:109–15

CardioVascular Research Foundation

ASAN Medical Center

Atherosclerotic Transformation after BMS Implantation

Serial Angioscopic Observation at Extended Follow-Up

Atherosclerotic degeneration represented as yellow plaque contributed to the late luminal narrowing as well as rupture with thrombotic events

Yokoyama et al. Circ Cardiovasc Interv 2009;2:205-12

Aedical Center

Intimal Hyperplasia after DES Implantation

Histologic and Angioscopic Evidences

Dominant IH As a General Mechanism of DES-ISR

Kang et al. Circ Cardiovasc Interv 2011;4:9-14

"Late Catch-up" in DES Serial F/U of MLD Serial F/U %IH Volume

CardioVascular Research Foundation

g et al. Am J Caralol 2010;105:1402-0

Early Histopathologic Findings within 1 year between BMS- vs. DES-ISR

Restenotic neointima was composed of proteoglycanrich SMC with different phenotypes and fibrolipid

Chieffo et al. Am J Cardiol 2009;104:1660-7

Neoatherosclerosis was more frequent in DES-lesions (DES 35% vs. BMS 10%) and occurs earlier

Medical Center

Different Timing of Neoatherosclerosis BMS vs. DES

In addition, the earliest necrotic core formation in DES was observed at 9 months, which was earlier than BMS lesions developed at 5 years

Nakazawa et al. JACC Cariovasc Imaging 2009;2:625-8

CardioVascular Research Foundation

Journal of the American College of Cardiology © 2011 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 57, No. 11, 2011 ISSN 0735-1097/\$36.00 doi:10.1016/j.jacc.2011.01.011

EXPEDITED PUBLICATIONS

The Pathology of Neoatherosclerosis in Human Coronary Implants

Bare-Metal and Drug-Eluting Stents

Gaku Nakazawa, MD,* Fumiyuki Otsuka, MD,* Masataka Nakano, MD,* Marc Vorpahl, MD,* Saami K. Yazdani, PHD,* Elena Ladich, MD,* Frank D. Kolodgie, PHD,* Aloke V. Finn, MD,† Renu Virmani, MD*

Neoatherosclerosis

	DES	BMS
Incidence	31%	16%
Median F/U time point	14 Mo	72 Mo

Nakazawa et al. JACC 2011;57:1314–22

Various Stages of Neoatherosclerosis

Nakazawa et al. JACC 2011;57:1314-22

Independent Risk Factors for Neoatherosclerosis

	OR	95% CI	р
Age, /year	0.963	0.942-0.983	<0.001
Stent duration (/month)	1.028	1.017-1.041	<0.001
SES usage	6.534	3.387-12.591	<0.001
PES usage	3.200	1.584-6.469	0.001
Underlying unstable lesion (rupture, TCFA)	2.387	1.326-4.302	0.004

Nakazawa et al. JACC 2011;57:1314–22

More Advanced Neoatherosclerosis TCFA-Containing Neointima Intimal rupture Thrombosis

"Unstable Neointima"
>5 years in BMS
≤2 years in DES

Although uncovered struts remains the primary cause of DES-VLST, neointimal rupture may be added as another risk factor

Nakazawa et al. JACC 2011;57:1314-22

Angioscopic DES Follow-Up at 10 MonthsYellow Grade ChangesPrevalence of Thrombi

The development of atherosclerotic **yellow** plaques may be a possible substrate for **late stent thrombosis**

Higo et al. JACC Cardiovasc Imaging 2009;2:616-24

Neoatherosclerosis Contributing Mechanism of Stent Failure

Broad Spectrum of Clinical Presentations from In-Stent Restenosis to Very Late Stent Thrombosis

Intravascular Ultrasound Findings in Patients With Very Late Stent Thrombosis After Either Drug-Eluting or Bare-Metal Stent Implantation

30 AMI with VLST (Mean F/U 33 Mo in DES, 108 Mo in BMS)

	DES	BMS
	(n=23)	(n=7)
Mean EEM CSA, mm ²	19.5±6.0	18.3±4.1
Mean Lumen CSA, mm ²	4.2±1.4	4.7±4.6
Mean Neointima, mm ²	3.0±1.1	5.0±1.7*
Minimal stent CSA, mm ²	6.1±1.5	7.4±3.7
Neointima rupture	10 (44%)	7 (100%)*

Neoatheroclerosis may contribute to the development of VLST as a common mechanism in BMS and DES

Tissue Characterization of In-Stent Neointima Using Intravascular **Ultrasound Radiofrequency Data Analysis**

Soo-Jin Kang, MD^a, Gary S. Mintz, MD^b, Duk-Woo Park, MD^a, Seung-Whan Lee, MD^a, Young-Hak Kim, MD^a, Cheol Whan Lee, MD^a, Ki-Hoon Han, MD^a, Jae-Joong Kim, MD^a, Seong-Wook Park, MD^a, and Seung-Jung Park, MD^{a,*}

Kang SJ et al. AJC 2010 ;106:1561-5

Neointimal Composition at Various FU Time 117 ISR Lesions (BMS and DES) with %IH>50%

>36Mo (n=26)		52.2*	<mark>5.6</mark> *	27.2*	15.0*
	-				
24-36Mo (n=15)		54.9*	<mark>7.1</mark>	<mark>#</mark> 25.8 ³	* 12.2*
	-				
12-24Mo (n=12)		62.5		8.1 2	2.3 7.3#
	-				
6-12Mo (n=42)		64.5		12.5	18.5 4.5
	-				
<6Mo (n=22)		67.2		15 4	14.6.2

Neoatherosclerosis degeneration increases intimal vulnerability with extended follow-up period

Kang SJ et al. AJC 2010 ;106:1561-5

Journal of the American College of Cardiology © 2010 by the American College of Cardiology Foundation Published by Elsevier Inc.

CLINICAL RESEARCH

Vol. 55, No. 1, 2010 ISSN 0735-1097/10/\$36.00 doi:10.1016/j.jacc.2009.08.032

Interventional Cardiology

Appearance of Lipid-Laden Intima and Neovascularization After Implantation of Bare-Metal Stents

Extended Late-Phase Observation by Intracoronary Optical Coherence Tomography

 Neointima transforms into lipid-laden atherosclerotic tissue in late phase after BMS

 Lipid-laden intima frequently has intimal disruption, thrombi and neovascularization

Takano et al. J Am Coll Cardiol 2009;55:26-32

71 Year-Old Female

8YA Stable angina →s/p BMS at pRCA and mLAD
7YA mLAD diffuse ISR → triple anti-platelet
Resting chest pain → "Unstable Angina"

Virtual Histology

In-Stent Neoatherosclerosis OCT Analysis in 50 DES-ISR Lesions with %IH>50%

	Total	Stable	Unstable	D
	N=50	N=30	N=20	
Follow-up (months)	32 (9-52)	14 (8-51)	41 (16-56)	0.178
Lipid neointima	45 (90%)	25 (83%)	20 (100%)	0.067
Fibrous cap thickness, µm	60 (50-162)	100 (60-205)	55 (42-105)	0.006
Incidence of thrombi	29 (58%)	13 (43%)	16 (80%)	0.010
Incidence of red thrombi	7 (14%)	1 (3%)	6 (30%)	0.012
Incidence of rupture	29 (58%)	14 (47%)	15 (75%)	0.044
Incidence of TCFA	26 (52%)	11 (37%)	15 (75%)	0.008
Neovascularization	30 (60%)	15 (50%)	15 (75%)	0.069

Kang et al. Accepted in Circulation 2011

DES Follow-up >20 Months Best Cut-Off to Predict **TCFA-Containing Neointima**

Kang et al. Accepted in Circulation 2011

COLLEGE MEDICINE

Various size and extent of thrombi, the degree of flow-limiting obstruction and acuteness may determine the diversity

ASAN Medical Center

SUMMARY

In-stent neoatherosclerosis may increase neointimal vulnerability and contribute to the development of stent failure as one of causative mechanisms, especially late after stent implantation

