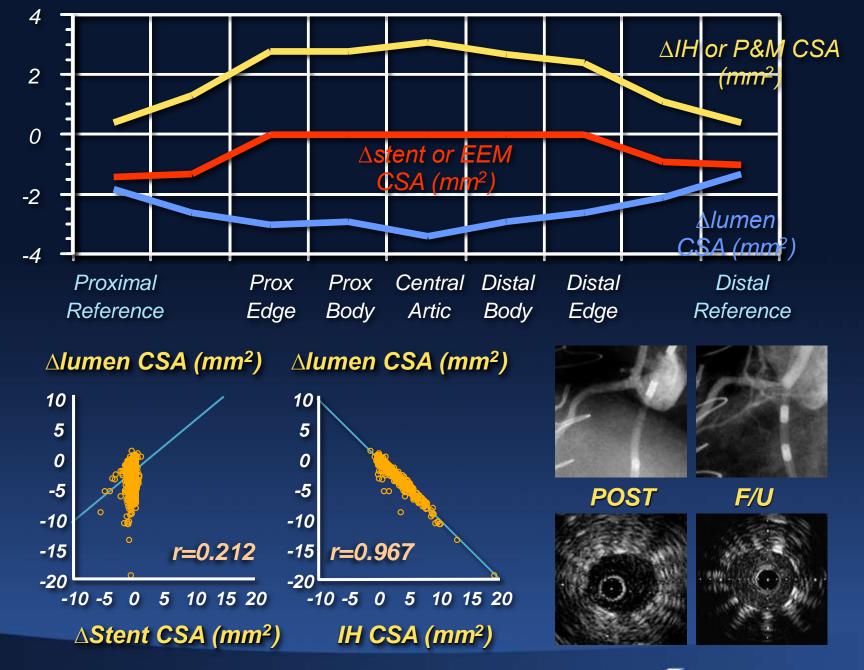
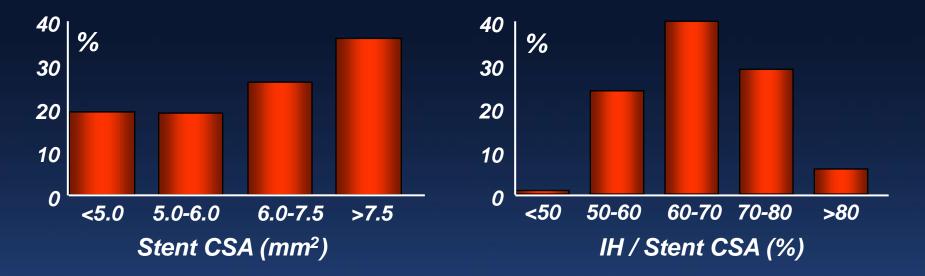
IVUS Optimization of PCI and Future Directions: A 25-Year Perspective


Gary S. Mintz, MD Cardiovascular Research Foundation

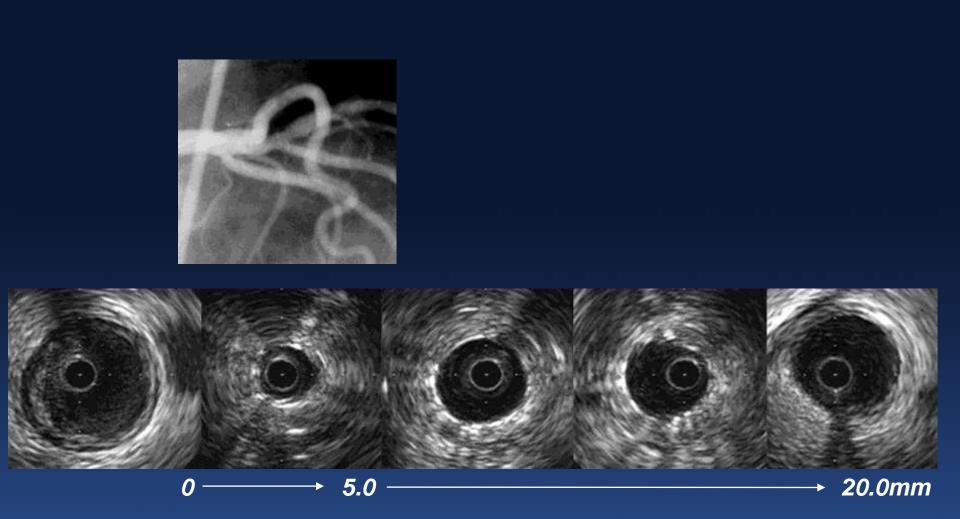
<u>Prior</u> to the seminal <u>serial</u> IVUS studies, it was believed that chronic stent recoil was the cause of restenosis in stented lesions.

<u>After</u> the seminal <u>serial</u> IVUS studies, it was proved that intimal hyperplasia was the cause of restenosis in stented lesions and that underexpansion and other complications at the time of implantation were common



Hoffmann et al. Circulation 1996;94:1247-54

1090 pts with BMS restenosis evaluated at the Washington Hospital Center


Twenty percent of lesions had a MSA <5.0 mm^{2;} and an additional 18% had a MSA of 5.0-6.0 mm².

 In 49 (4.5%), there were mechanical complications: (1) missing the lesion, (2) stent "crush," and (3) stent was "missing" - stripped off the balloon during implantation.

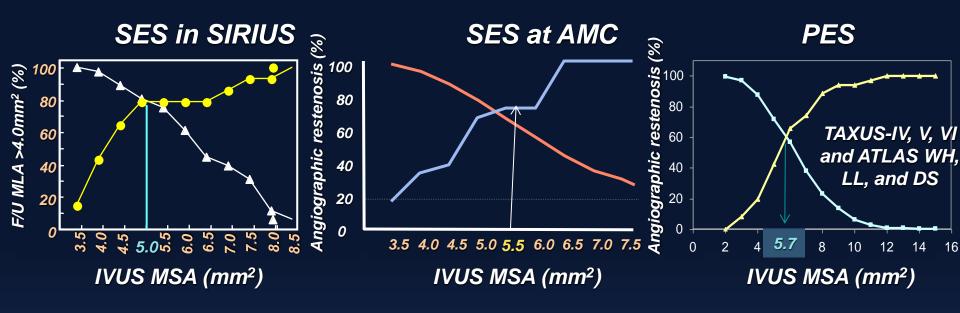
Castagna et al. Am Heart J 2001;142:970-4

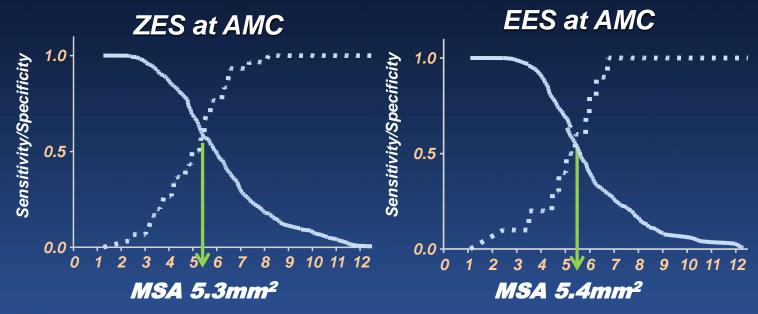
IVUS Predictors of BMS Early Thrombosis & Restenosis

	Thrombosis	Restenosis
Small MSA or	•Cheneau et al. Circulation	•Kasaoka et al. J Am Coll Cardiol 1998;32:1630-5
underexpansion	2003;108:43-7	 Castagna et al. AHJ 2001;142:970-4
		 de Feyter et al. Circulation 1999;100:1777-83
		 Sonoda et al. J Am Coll Cardiol 2004;43:1959-63
		•Morino et al. Am J Cardiol 2001;88:301-3
		•Ziada et al. Am Heart J 2001;141:823-31
		 Doi et al. JACC Cardiovasc Interv. 2009;2:1269-75
Edge problems (geographic miss, secondary lesions,	•Cheneau et al. Circulation 2003;108:43-7	 Sakurai et al. Am J Cardiol 2005;96:1251- 3 Liu et al. Am J Cardiol 2009;103:501-6
large plaque burden,	2000,700.107	
dissections, etc)		
Stent length		•Kasaoka et al. J Am Coll Cardiol 1998;32:1630-5
		 de Feyter et al. Circulation 1999;100:1777-83

IVUS Predictors of DES Early Thrombosis & Restenosis

	Early Thrombosis	Restenosis
Small MSA or MLA or underexpansion	 Fujii et al. J Am Coll Cardiol 2005;45:995-8 Okabe et al. Am J Cardiol. 2007;100:615-20 Liu et al. JACC Cardiovasc Interv. 2009;2:428-34 Choi et al. Circ Cardiovasc Interv 2011;4:239-47 	 Sonoda et al. J Am Coll Cardiol 2004;43:1959-63 Hong et al. Eur Heart J 2006;27:1305-10 Doi et al JACC Cardiovasc Interv. 2009;2:1269-75 Fujii et al. Circulation 2004;109:1085-1088 Kang et al. Circ Cardiovasc Interv 2011;4:9-14 Choi et al. Am J Cardiol 2012;109:455-60 Song et al. Catheter Cardiovasc Interv 2014;83:873-8
Edge problems (geographic miss, secondary lesions, large plaque burden, dissections, etc)	 Fujii et al. J Am Coll Cardiol 2005;45:995-8 Okabe et al., Am J Cardiol. 2007;100:615-20 Liu et al. JACC Cardiovasc Interv. 2009;2:428-34 Choi et al. Circ Cardiovasc Interv 2011;4:239-47 	 Sakurai et al. Am J Cardiol 2005;96:1251-3 Liu et al. Am J Cardiol 2009;103:501-6 Costa et al, Am J Cardiol, 2008;101:1704-11 Kang et al. Am J Cardiol 2013;111:1408-14 Kobayashi et al. ACC2014

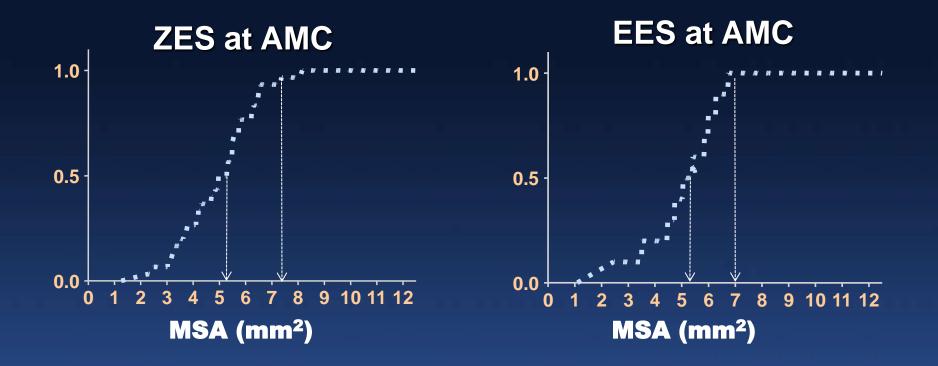

Analysis of 298 ISR lesions (52 BMS, 73 SES, 52 PES, 16 ZES, and 105 EES) at CUMC


	BMS	1st generation DES	2nd generation DES	p-value
#	52	125	121	
Diabetes mellitus	19 (36.5%)	68 (48.9%)	57 (53.3%)	0.14
ACS presentation	28 (53.9%)	81 (58.3%)	56 (52.8%)	0.7
Total stent length (mm)	21.8±13.5	29.4±16.1	32.2±18.7	0.001
Average reference lumen area (mm ²)	6.3±2.3	6.3±1.8	6.4±1.9	1.0
Minimum stent area (MSA)	6.4±2.2	4.9±1.6	4.7±1.6	<0.001
MSA <5 mm²	28.8%	56.8%	69.2%	<0.001
%NIH at MLA site	60.9±12.8	56.1±16.0	52.3±16.9	0.006
Diffuse ISR	28.8%	30.2%	28.0%	1.0
Neointimal calcification (%)	19.2%	13.0%	18.5%	0.41
Stent fracture, n (%)	0.0%	5.8%	6.5%	0.18
Stent malapposition, n (%)	7.7%	10.1%	10.3%	0.9

Goto, unpublished

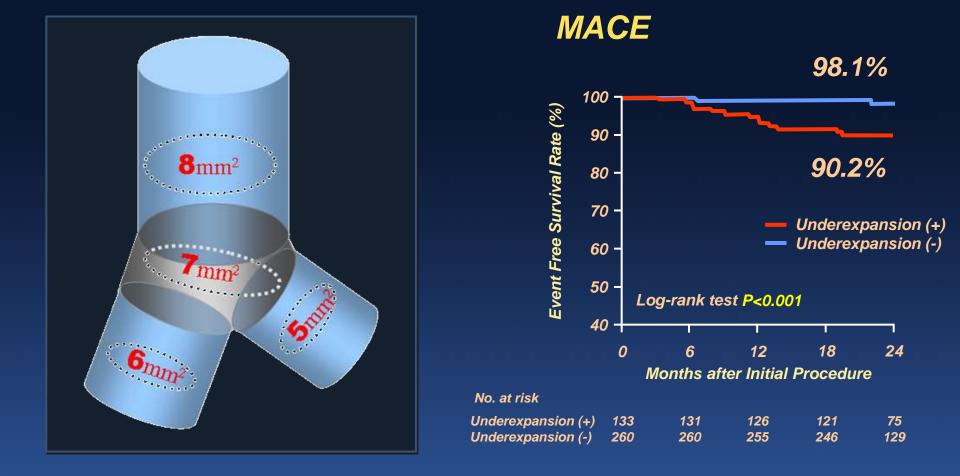
ARDIOVASCULAR ESEARCH FOUNDATION the heart of innovation

Sonoda et al. J Am Coll Cardiol 2004;43:1959-63 Hong et al. Eur Heart J 2006;27:1305-10 Doi et al. JACC Cardiovasc Interv. 2009;2:1269-75 Song et al. Cathet Cardiovasc Interv 2014;83:873-8



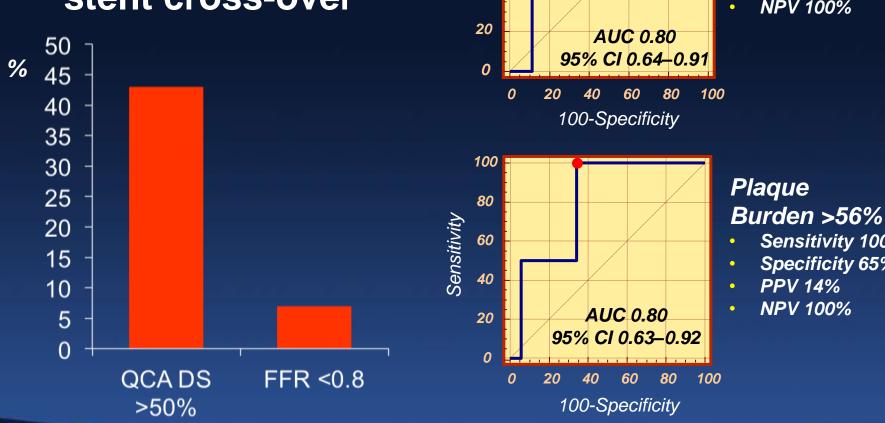
An ideal end point should be a clinically reasonable MSA that maximizes the probability of long-term stent patency while minimizing the risk of stent failure.

- By definition, sensitivity/specificity curve analysis "must" identify a single MSA that "best" separates restenosis from no restenosis. However, sensitivity and specificity are not of similar importance when predicting events.
- Is an MSA of 5.5mm² enough in big arteries? "No." Can it be achieved in small arteries? Also "No
- If only one MSA was always sufficient in all situations, we would only need one size stent :
 - 100% expansion of a 2.75mm DES = 5.9mm²
- Finally, can it be predicted angiographically? "No."


Predicting Freedom From Angiographic Restenosis with Second Generation DES

Song et al. Cathet Cardiovasc Interv 2014;83:873-8 🕥 🦳 🤉

ARDIOVASCULAR ESEARCH FOUNDATION the heart of innovation


Criteria for Stent Underexpansion at the Distal LMCA Bifurcation (n=403)

Kang et al. *Circulation Cardiovasc Interv.* 2011;4:562-9

OCRF CARDIOVASCULAR At the heart of innovation

43 LMCA bifurcation lesions with a pre-PCI LCX ostial DS<50% were treated by singlestent cross-over

$MLA < 3.7 mm^{2}$

Sensitivity 100%

Sensitivity 100%

Specificity 65%

PPV 14%

NPV 100%

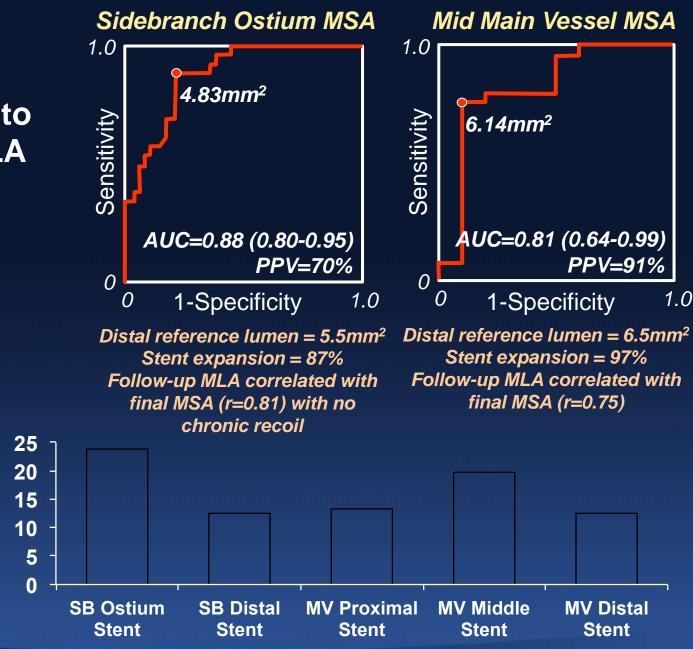
- **Specificity 71%**
- **PPV 16%**
- **NPV 100%**

Kang et al. Catheter Cardiovasc Interv 2014:83:545-52

100

80

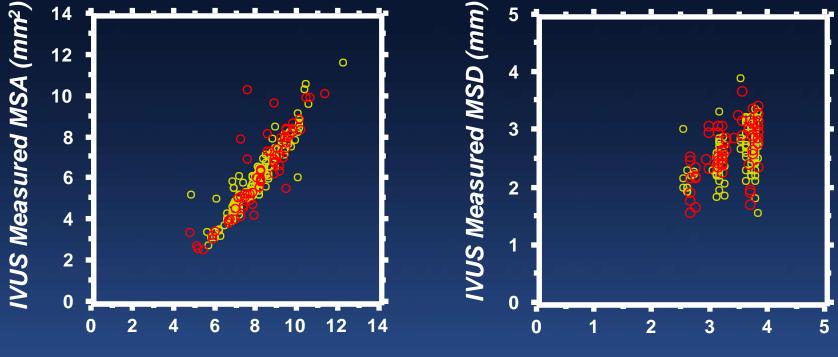
60


40

Sensitivity

Optimal Cutoff Value of Post-Procedural MSA to Predict a F/U MLA ≥4mm² After Bifurcation T-Stenting

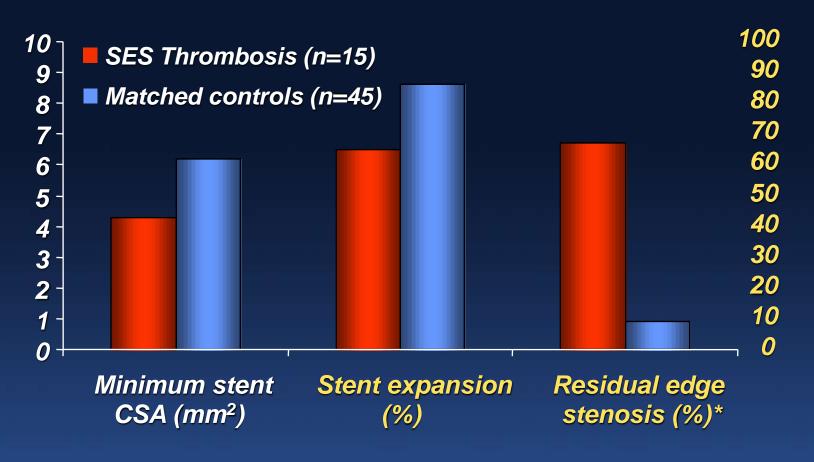
%**IH**



Hahn et al. J Am Coll Cardiol 2009;54:110-7

Manufacturer's Compliance Charts Cannot Be Used to Guarantee Adequate Stent Expansion

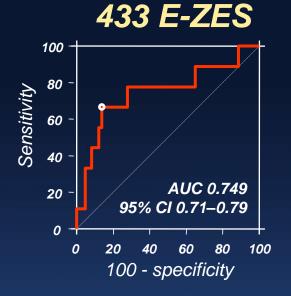
Comparison of IVUS-measured minimum stent diameter (MSD) and minimum stent area (MSA) with the predicted measurements from Cypher in yellow, n=133) and Taxus in red, n=67). DES achieve an average of only 75% of the predicted MSD (66% of MSA)


Predicted MSA (mm²)

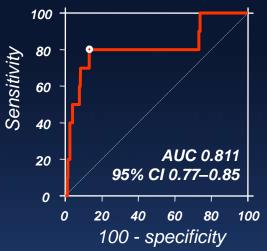
Predicted MSD (mm)

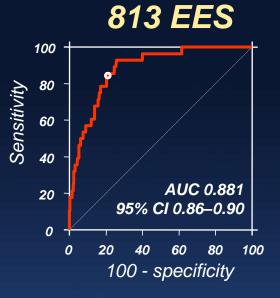
de Rebamar Costa et al. Am J Cardiol 2005;96:74-8 de Rebamar Costa et al. Am Heart J 2007;153:297-303 He et al. Am J Cardiol 2010;105:1272-5

IVUS Predictors of Early SES Thrombosis



*Residual edge stenosis = edge lumen CSA <4.0mm² & plaque burden >70%.


Fujii et al. J Am Coll Cardiol 2005;45:995-8



IVUS Predictors of Edge Restenosis after Second Generation DES

Plaque burden=56.3% Sensitivity 67% Specificity 86%

Plaque burden=57.3% Sensitivity 80% Specificity 87%

Plaque Burden=54.2% Sensitivity 86% Specificity 80%

Kang et al. Am J Cardiol 2013;111:1408-1 CRF CARDIOVASCULA

Edge Dissection in ADAPT-DES

	Dissection (159 pts)	No dissection (1903 pts)	P Value
MACE	11.48% (18)	7.97% (148)	0.097
Cardiac death	1.91% (3)	1.44% (26)	0.6
Peri-procedural MI	2.52% (4)	1.16% (22)	0.14
Clinically driven TLR	5.8% (9)	3.1% (68)	0.067
Stent Thrombosis	1.28% (2)	0.53% (10)	0.2

In 159 pts with dissection, the predictors of TLR were dissection length of 2.3 mm (AUC 0.72, p=0.04), dissection angle of 70.0° (AUC 0.66, p=0.16), and effective lumen CSA of 6.0mm² (AUC 0.66, p=0.13).

(Kobayashi et al. ACC 2014)

Although it was one of the original Colombo criteria, there is little or no data linking *isolated* acute stent malapposition to adverse clinical events including ST and restenosis.

- Stent malapposition is associated with *less* intimal hyperplasia the drug can cross small stent vessel-wall gaps
 - Hong et al, Circulation. 2006;113:414-9

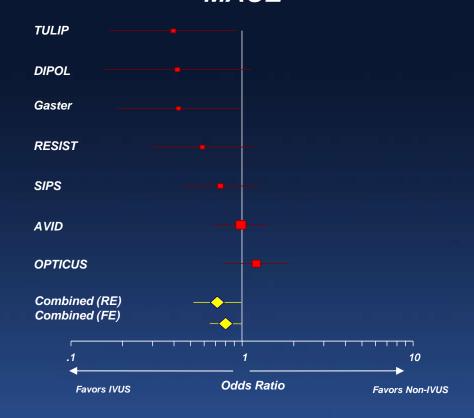
• Steinberg et al, JACC Cardiovasc Intervent 2010;3:486-94

Kimura et al, Am J Cardiol . 2006;98:436-42

- Balakrishnan et al., Circulation 2005;111:2958-65
- In the integrated analysis of slow release formulation PES in TAXUS IV, V, & VI & TAXUS ATLAS Workhorse, Long Lesion, and Direct Stent Trial, there was no effect of acute stent malapposition on MACE or ST within the first 9 mos – whether BMS or DES
 - Steinberg et al, JACC Cardiovasc Intervent 2010;3:486-94
- In HORIZONS-AMI, acute stent malapposition was detected in 33.8% of 68 lesions treated with PES and 38.7% of 24 lesions treated with BMS (p=0.7). There was no difference in MACE between pts with versus without acute stent malapposition in either BMS or PES cohorts; and acute malapposition was not a predictor of early ST
 - Guo et al. Circulation 2010;122:1077-84
 - Choi et al. Circ Cardiovasc Interv 2011;4:239-47
- Although acute malapposition was observed in 28/403 pts with LMCA lesions treated with DES implantation, malapposition was not related to MACE at follow-up.
 - Kang et al. Circ Cardiovasc Interv 2011;4:562-9
- Although acute malapposition was detected in 10.5% of 1982 pts in ADAPT-DES, it was not associated with advere events at either 30 days or 2 years.
 - Sousa et al. ACC2014

IVUS acute malapposition in ADAPT-DES

	Malapposition (N=209)	No Malapposition (N=1773)	P-value
RCA	38.3% (118)	30.8% (658)	0.01
Total lesion length (mm)	32.0 ± 20.4	28.8 ± 19.4	0.008
Reference lumen area (mm²)	10.6 ± 4.2	8.4 ± 3.3	<0.0001
Reference superficial calcium	52.6% (162)	44.3% (95)	0.007
Dense calcium volume, %	12.0 ± 7.2	10.3 ± 7.3	0.02
Necrotic core volume, %	24.1 ± 7.5	22.5 ± 8.0	0.05
Max superficial calcium (°)	136.5 ± 90.4	107.2 ± 82.0	0.0006
30-day MACE	0.67% (2)	0.45% (8)	0.62
30-day ST (definite/ probable)	0.67% (2)	0.23% (4)	0.19
2-year MACE	9.3% (57)	8.08% (140)	0.47
2-year ST (definite/ probable)	1.01% (3)	0.63% (11)	0.45
2-year MI	4.11% (12)	3.07% (53)	0.34
2-year TLR – Clinically driven	5.02% (15)	4.29% (76)	0.57


(Sousa et al. ACC 2014)

Meta-analysis of Randomized Trials of IVUS vs Angiographic Guided BMS implantation (n=2193 pts)

IVUS guidance was associated with significantly lower rate of

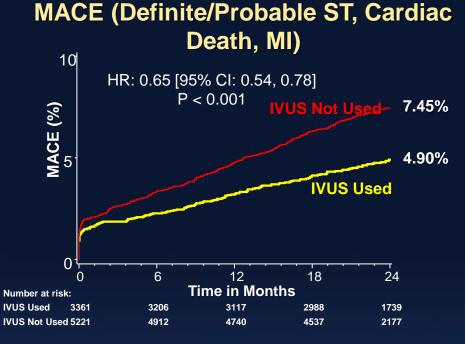
- Angiographic restenosis (22.2% vs. 28.9%; OR 0.64, p=0.02)
- Repeat revascularization (12.6% vs. 18.4%; OR 0.66, p=0.004)
- Overall MACE (19.1% vs. 23.1%; OR 0.69, p=0.03)
- But no significant effect on MI (p=0.51) or mortality (p=0.18).
- ST was not reported

MACE

Parise et al. Am J Cardiol. 2011;107:374-82

Four meta-analyses have assessed IVUS vs angiography-guided DES implantation

					HR (p-values)					
Reference	Yr	RCT	Non- RCT	Pts	MACE	Death	MI	ST	TLR	TVR
Zhang et al Eurointervention	2012	1	10	19,619	0.87 (p=0.008)	0.59 (p<0.001)	0.82 (p=0.13)	0.58 (p<0.001)	0.90 (p=0.3)	0.90 (p=0.2)
Propensity score matched sub- analysis			6	5,300	0.86 (p=0.06)	0.73 (p=0.04)	0.63 (p=0.01)	0.57 (p=0.004)	0.85 (p=0.3)	0.94 (p=0.6)
Klersy et al Int J Cardiol	2013	3	9	18,707	0.80 (p<0.001)	0.60 (p<0.001)	0.59 (p=0.001)	0.58 (p=0.007)		95 0.8)
Jang et al. JACC Cardiovasc Interv	2014	3	12	24,869	0.79 (p=0.001)	0.64 (p<0.001)	0.57 (p<0.001)	0.59 (p=0.002)	0.76 (p=0.01)	0.81 (p=0.01)
Propensity score matched sub- analysis			9	13,545	0.79 (p=0.01)	0.58 (p=0.01)	0.56 (p=0.04)	0.52 (p=0.004)	0.85 (p=0.3)	0.93 (p=0.3)
Ahn et al. Am J Cardiol	2014	3	14	26,503	0.74 (p<0.001)	0.61 (p<0.001)	0.57 (p<0.001)	0.59 (p<0.001)	0.81 (p=0.046)	0.82 (p=0.022)



Recently Published Studies Assessing the Benefit of IVUS

-	<u> </u>				
Reference	Lesion subset	Stats	# Pts	Endpoint	
Patel et al. Cath Cardiovasc Interv, in press	Ostial	Propensity score matched	225	MACE (HR=0.54, p=0.04)	
De la Torre Hernandez et al. JACC Cardiovasc Interv 2014;7:244-54	LM	Propensity score matched	505 pairs	ST (0.6% vs 2.2%, p=0.04) MACE (11.7% vs 16.0%, p=0.04, especially distal lesions treated with 2 stents: 16.7% vs 41.0%, p=0.02)	
Gao et al. Patient Pref Adherence 2014;8:1-11	LM	Propensity score matched	291 pairs	MACE (16.2% vs 24.4%, p=0.014)	
Hong et al. Am J Cardiol 2014;114:534	СТО	Propensity score matched	201 pairs	ST (0% vs 3%, p=0.014)	
Singh et al. Am J Cardiol 2015, in press			377,096 angio vs 24,475 IVUS	In-hospital mortality (0.4% vs. 0.8%, P<0.001)	
Studies showing NO benefit of IVUS					
Reference	Lesion subset	Stats	# Pts	Endpoint	
Fröhlich et al. JAMA Intern Med. 2014;174:1360-1366	All	Propensity score	803 pairs	also no benefit for FFR-guidance	

NDATION

P = 0.004

18

3065

4713

IVUS Used

6

3260

5019

12

3182

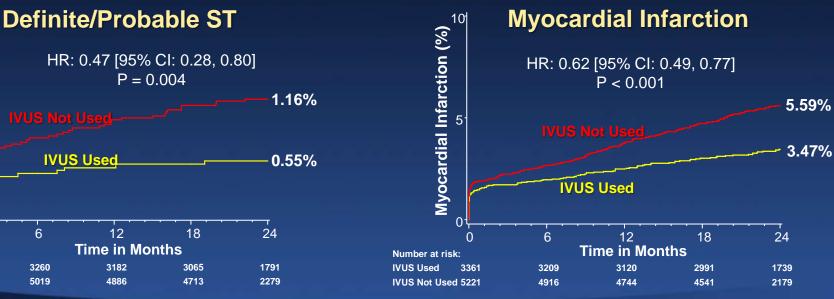
4886

Time in Months

21

Definite/Probable ST (%)

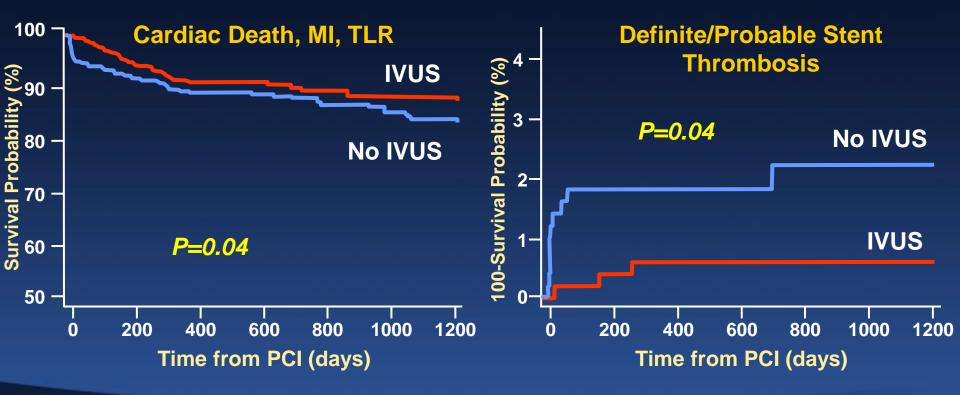
Number at risk:


IVUS Not Used 5221

IVUS Used

0

3361


Two year follow-up data from ADAPT-DES (3361 pts treated with IVUSguidance vs 5221 pts treated with angiographic guidance)

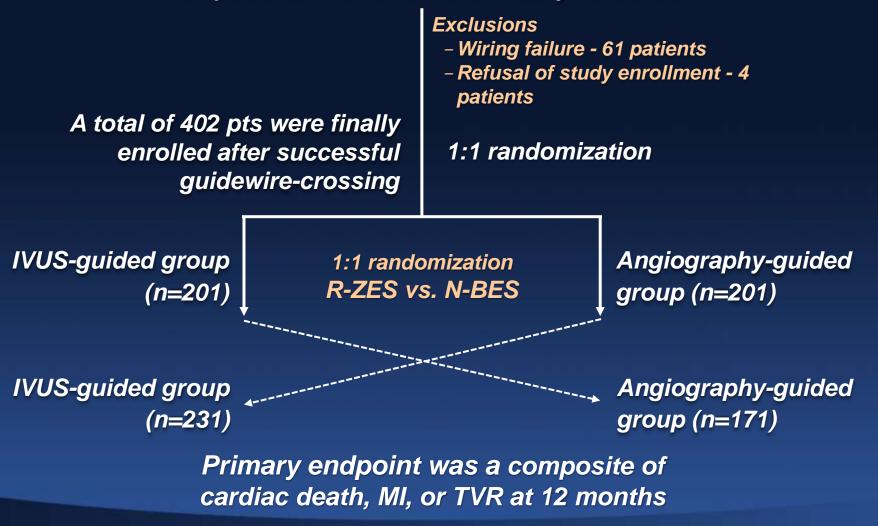
Maehara et al. J Am Coll Cardiol 2013;62:B21-B22

Impact of IVUS Guidance of Unprotected LM Propensity Matched 1010 pts from 4 Registries

- Distal LM lesion ~60%, 2 stent technique ~13%
- IVUS guidance was an independent predictor of MACE

De la Torre Hernandez et al. JACC 2014:244-54

Comparison of 1-year clinical outcomes between IVUSguided versus angiography-guided implantation of DES for LMCA lesions: A single-center analysis of a 1,016 pt cohort

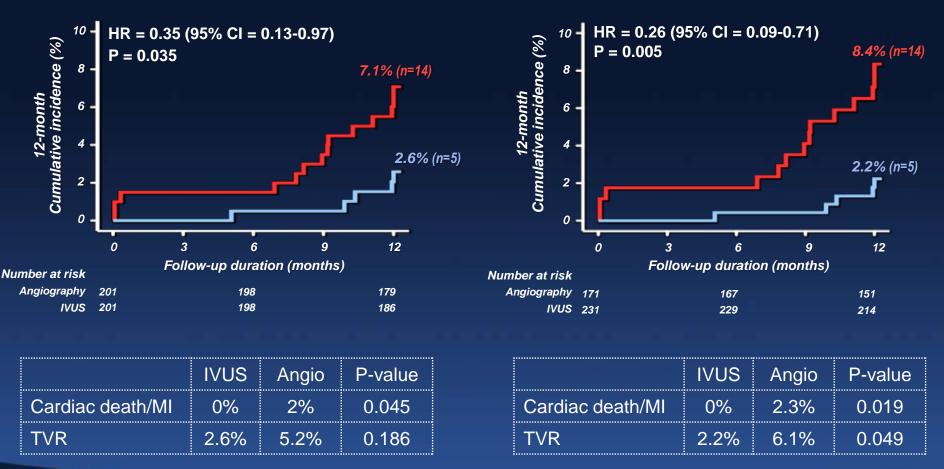

	IVUS	No IVUS	Р
Overall	337	679	
Cardiac death	1.8%	6.2%	0.002
STEMI	1.2%	3.4%	0.004
TLR	2.4%	9.4%	<0.001
Stent thrombosis	0.6%	2.7%	0.026
MACE	14.8%	27.2%	<0.001
Propensity Score Matched	291	291	
Cardiac death	12.4%	15.1%	0.023
STEMI	1.0%	3.4%	0.05
TLR	2.7%	8.2%	0.004
Stent thrombosis	0.3%	2.4%	0.075
MACE	16.2%	24.4%	0.014

Gao et al. Patient Pref Adherence 2014;8:1-11

Randomized IVUS vs Angiographic Guided CTO Intervention

467 patients with CTO were initially screened

Jang et al. TCT2014



Primary endpoint (Cardiac death, MI, TVR)

Angiography-guided group
 IVUS-guided group

Intention to Treat

Per Protocol

Jang et al. TCT2014

IVUS Guidance to Minimize the Use of Iodine Contrast in PCI

- 83 pts randomized to IVUS vs angiographic guidance
- Pts treated with a pre-specified PCI strategy designed to reduce contrast usage in both groups
- IVUS-guided pts were treated with a pre-specified strategy to minimize contrast usage even further by avoiding angiography and using IVUS for pre-intervention assessment, stent sizing, stent positioning, and final assessment
- <u>Reduction in contrast use (primary endpoint) from 64.5ml (IQR 42.8-97ml, range 19-170ml) to 20.0ml (IQR 12.5-30.0ml, range 3-54ml):</u> p<0.0001
- Increased procedure time (34.0 (18.5-54.5) to 48.0 (34.0-61.0) min: p=0.06
- No difference in 4-month outcomes although there was a trend toward a less common increase in serum Cr >0.5mg/dl (7.3% vs 19.0%, p=0.2)

Mariani et al. JACC Cardiovasc Interv 2014;7:1287-93

IVUS in the EXCELLENT Trial

- 619 "IVUS-guided" vs 802 angiography-guided PCI-treated patients
- Overall, IVUS "guidance" was associated with a significantly higher

However, this negative effect of IVUS guidance has not been seen in any other BMS or DES study. In fact, in the most recent meta-analysis the risk of peri-procedural MI did not significantly differ between IVUS-guided and angiography-guided DES implantation (OR 1.01, 95% CI 0.73 to 1.67, P=0.65)

were no significant advantages of IVUS "guidance," but rather a significant increase in periprocedural enzyme elevation, reflecting more aggressive procedures performed with IVUS "guidance."

Park et al. Int J Cardiol 2013;167:721-6

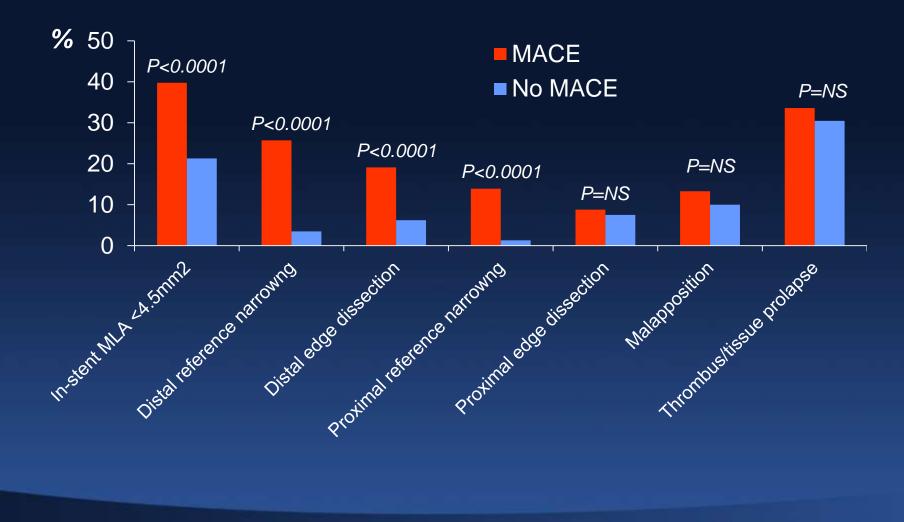
CENIC Registry - Stent Implantation in Brazil IVUS Guidance vs no IVUS guidance (1997-2001)

In-Hospital Outcomes

	IVUS Guidance (n = 3,375 Pts)	No IVUS Guidance (n = 15,151 Pts)	P-value
Cardiac death	0.4%	1.1%	<0.001
Q-MI	0.6%	0.9%	0.054
Death or MI	0.8%	1.7%	<0.001
CABG	0.2%	0.2%	0.8

IVUS guidance was the only independent predictor of freedom from in-hospital death/MI (OR=0.47, 95% CI 0.31 - 0.70)

Sousa et al. ACC 2002


Peri-procedural MI in ADAPT-DES

	IVUS n = 3361	No IVUS n = 5221	P Value
Definite/probable ST	0.55% (18)	1.16% (59)	0.004
All death	3.32% (106)	4.23% (210)	0.034
Cardiac death	1.71% (54)	2.42% (119)	0.028
	3.47% (112)	5.59% (279)	<0.0001
- Peri-procedural MI	1.31% (44)	1.62% (84)	0.26
- ST-related MI	0.52% (17)	0.92% (46)	0.045
- Non-ST related MI	1.66% (52)	3.11% (151)	<0.0001
- Q wave MI	0.34% (11)	0.85% (42)	0.006
- Non Q wave MI	3.13% (101)	4.85% (242)	0.0001
Clinically driven TLR	4.79% (161)	6.01% (314)	0.02
Clinically driven TVR	8.30% (279)	9.77% (510)	0.02

Witzenbichler et al. Circulation 2014;129:463-70

929 pts (989 lesions) in CLIO-PCI III registry MACE (death, MI, ST, or TLR in 113 pts,12.2%) @ 1 yr

Prati, TCT2014

Four Companies Are Working on Next Generation IVUS Systems

 ACIST (purchased SVMI - has been working on next generation IVUS since 2007)

- Available

- InfraReDx
 Limited market release
- BostonScientific
- Volcano

Under development

Each is taking a very different approach

ACIST: HD-IVUS

Measured Axial Resolution	<50 µm	Fibrous Cap (>100 um) Overlying a Acellular Region (haaad an histologu)
Lateral Resolution	~200 µm	Media (based on histology) (echolucent
Max. Frame Rate	60 fps	band)
Max. Pullback Speed	10 mm/sec	
Frame Spacing	5-167 µm	
Pullback length	120 mm	
Tissue Penetration	~3 mm @ 60 Mhz	
Imaging in Blood	Yes	
		Plaque Nedia- Adventitia Border Side Branch (based on histology slides)

Conclusions

- The only reason that we know as much as we do about how stents do or do not work is because of intravascular imaging – in particular many many studies utilizing intravascular ultrasound.
- Today, IVUS remains the gold standard for optimal stent implantation

