Critical Limb Ischemia: When Outcomes Matter, Design Matters

William A. Gray MD
Director of Endovascular Services
Associate Professor of Clinical Medicine
Columbia University Medical Center
The Cardiovascular Research Foundation

Typical randomized device trial design

- The new device is compared to the existing standard of care device/surgery/medicine
- 2. A primary outcome endpoint is chosen not only to reflect the strengths of the new device, but also for clinical relevance
- 3. The endpoint will have a pre-specified time course
 - Occasionally the time course will be driven by number of events and therefore be unspecified
- 4. An expected performance level of each therapy is determined, and then a clinically relevant *delta* between them is chosen. The statistics around these assumptions will drive trial size
- Population heterogeneity, and confounding, is minimized

Prior relevant studies

CLI: Cutting Balloon PTA

- CTA of popliteal and infrapopliteal vessels in 73 pts with CLI
- Adjunctive stenting: 20%
- One year: no surgical bypass
- Limb salvage at 1 year: 89.5%

BTK Chill

- 115 limbs/108 patients Rutherford 4-6 treated with Cryoplasty
 - Infra-popliteal vessels between 2.5 and 5.0 mm
- Results:
 - 97% acute success
 - One-year TLR 21%
 - Overall 6 month and 1 year major amputationfree survival: 93% and 85%

• R4:	MAmp 0%	Death: 0%
• R5:	MAmp11%	Death: 0%
• R6:	MAmp 40%	Death: 32%

• +DM: MAmp 20% Death: 9%

• -DM: MAmp 4% Death: 11%

BTK CHILL: Observations vis-à-vis trial design

- TLR rate acceptable, but likely restenosis rate ~40%
- Significant disparity in outcomes depending on Rutherford class, diabetes

LACI Phase 2 Registry Laser Angioplasty for Critical Limb Ischemia

- Prospective, multi-center study
- Patients with CLI
 - Rutherford Category 4-6
- Treatment:
 - ELA of SFA, popliteal and/or infrapopliteal arteries
 - Optional adjunctive PTA and stenting
- Primary Endpoint:
 - limb salvage (freedom from amputation at or above the ankle) at 6 months

LACI 2: Descriptors

155 limbs

Rutherford Category

4

5 or 6

29%

71%

Reasons for poor surgical candidacy

Absence of venous graft

Poor/no distal vessel

High surgical risk

Only one reason

Any two reasons

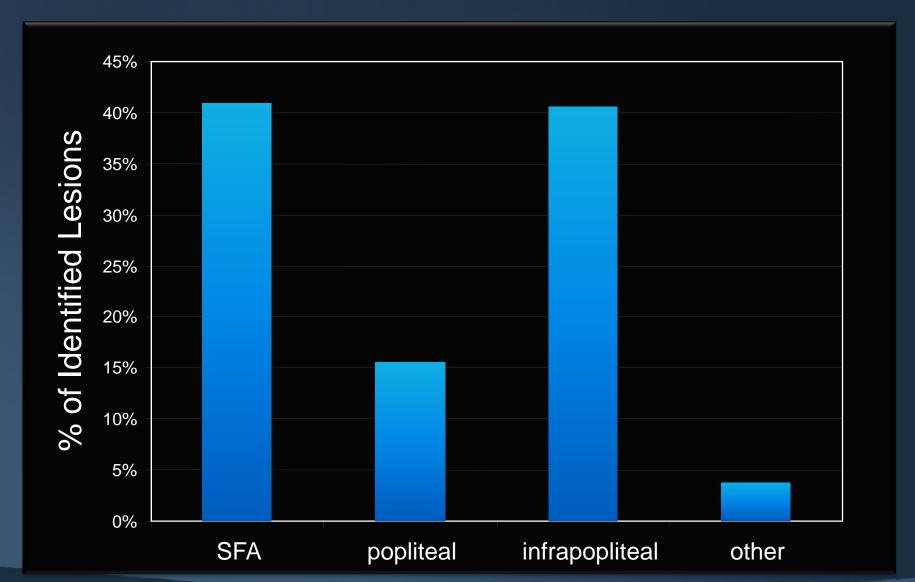
All three reasons

32%

68%

46%

61%


33%

6%

LACI 2: Vascular lesion locations

LACI 2 - Procedure Results

Guidewire crossing success		92%
Laser treatment delivered		
Adjunctive balloon		
Stent Placement		45%
		HERBANISHINGER (SKOSHERI) KARANGU (SKOSHERI) KASHERIK
Procedure Success		85%
<50% residual stenosis at final		
Straight line flow to foot estal	blished 89%	
Hospital stay (days):	mean	3.0
	median	1.0

LACI 2: 6-Month Results

Total enrollment	155
death	17 (11%)
lost to follow-up	11 (7%)
Reached 6-month follow-up	127
Major amputation	9 (7%)
Survival with limb salvage	118/127 – 93%

LACI 2: Observations vis-à-vis trial design

- Six month outcomes non-standard time course(12 months)
- CLI represents complex disease: multiple stenoses, heterogeneous vascular distribution and occlusions
- High risk patient population with high drop-out due to mortality
- Good limb salvage rate despite this high-risk patient cohort
- Incidence of surgical intervention is very low

BASIL trial

Bypass vs. angioplasty in Severe Ischemia of the Leg

- 452 patients with CLI due to infra-popliteal disease randomized to endovascular or surgical bypass (in patients with good vein)
 - **1999-2004**
 - 30 day mortality low for both
 - Surgery with more infection and MI
 - Surgery with greater 1 year costs
 - PTA TVR: 28% v. 17% at 12 months
 - No differences at 2 year but trend favoring surgery at 5 years

BASIL Results: AFS

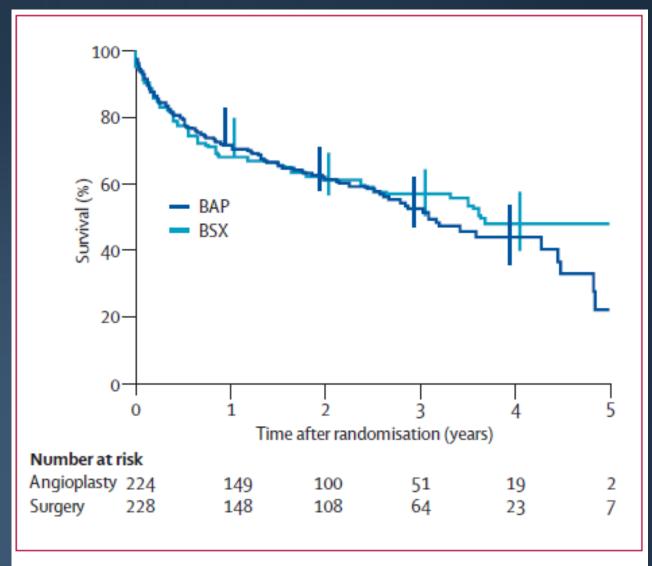
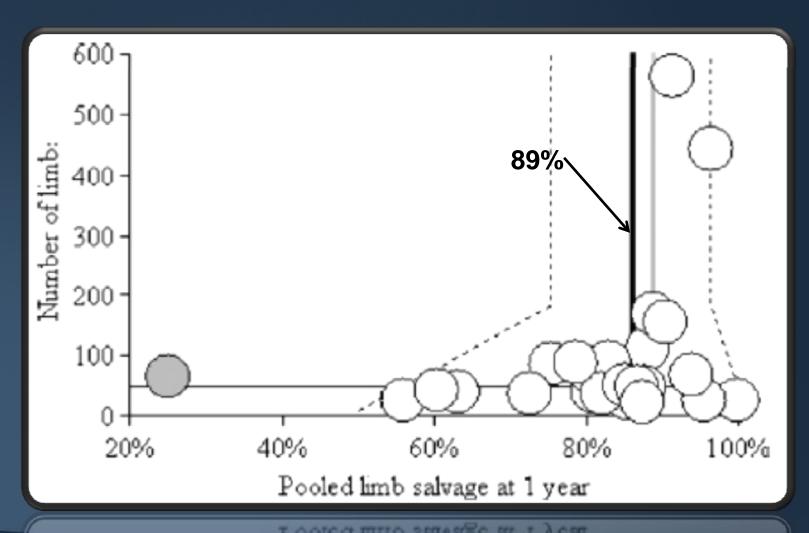


Figure 2: Amputation-free survival after bypass surgery and balloon angioplasty


Observations from BASIL

 Comparing with a surgical standard, endovascular approach to CLI is a reasonable alternative for the endpoint of limb salvage

Mets-analysis:12 month limb-salvage

Data from meta-analysis of infrapopliteal intervention for CLI

Table II. Meta-analysis results of crural percutaneous transluminal angioplasty and popliteal-to-distal bypass^a

Result	1 month	6 months	1 year	2 years	3 years
Primary patency PTA Bypass P	77.4 ± 4.1	65.0 ± 7.0	58.1 ± 4.6	51.3 ± 6.6	48.6 ± 8.0
	93.3 ± 1.1	85.8 ± 2.1	81.5 ± 2.0	76.8 ± 2.3	72.3 ± 2.7
	<.05	<.05	<.05	<.05	<.05
Secondary patency PTA Bypass P	83.3 ± 1.4 94.9 ± 1.0 <.05		68.2 ± 5.9 85.9 ± 1.9 <.05		62.9 ± 11.0 76.7 ± 2.9
Limb salvage PTA Bypass Patient survival	93.4 ± 2.3	88.2 ± 4.4	86.0 ± 2.7	83.8 ± 3.3	82.4 ± 3.4
	95.1 ± 1.2	90.9 ± 1.9	88.5 ± 2.2	85.2 ± 2.5	82.3 ± 3.0
PTA Bypass	98.3 ± 0.7	92.3 ± 5.5	87.0 ± 2.1	74.3 ± 3.7	68.4 ± 5.5
	NA	NA	NA	NA	NA
Patient survival PTA Bypass	98.3 ± 0.7	92.3 ± 5.5	87.0 ± 2.1	74.3 ± 3.7	68.4 ± 5.5
	NA	NA	NA	NA	NA
Bypass					82.4 = 3.4 82.3 ± 3.0
CARDIOVASCULAR RESEARCH FOUNDATION		J Vasc Surg 200)8;47:975-81		lumbia University dical Center

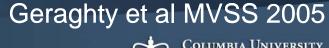
Is long term patency needed for ulcer healing?

Optimal vascularisation **Patent** Vascularisation Restenosis Revascularisation Metabolic need Trauma Time needed for healing COLUMBIA UNIVERSITY Vermassen F 2010

Back to the trial design...

1. The new device is compared to the existing standard of care device/surgery/medicine

- The standard of care in critical limb ischemia is bypass surgery, except when it isn't:
 - Amputation is still prevalent
 - As many as 45% of patients with CLI do not have suitable ipsilateral GSV
 - The BASIL/LACI trial demonstrated both a mixed lesion location and "primitive" PTA
 - Majority of patients had SFA, 62% had infra-popliteal, PTA
 - 20% initial failure rate
 - BASIL demonstrated parity between the surgical standard, when it was available



Vascular Surgical Trends: A Changing Standard of Care

Revascularization Procedures by Vascular Surgery 2002-4

	2002	2003	2004	% change
Endo	82	123	207	+152%
Bypass	218	219	144	-34%

2. A primary outcome endpoint is chosen not only to reflect the strengths of the new device, but also for clinical relevance

 The most relevant clinical endpoint is amputation-free survival/limb salvage, but does not highlight the strengths of a device which improves patency

3. The endpoint has a pre-specified time course

- A 1-year time course appears to be most appropriate
 - Although this may not be long enough to highlight a patency advantage

- 4. An expected performance level of each therapy is determined, and then a clinically relevant *delta* between them is chosen. The statistics around these assumptions will drive trial size
 - Problem #1: Endovascular limb-salvage rates are not significantly differentiated between therapies thus far
 - Problem #2: Endovascular patency data is limited, but suggests that the relationship to limb-salvage is only moderate

5. Population heterogeneity, and confounding, is minimized

- Inclusion of Rutherford classes 4-6 leads to heterogeneity in outcomes
 - As demonstrated in LACI 2
- Both LACI and BASIL demonstrated significant lesion location heterogeneity
- Even assuming intervention is limited to infrapopliteal vessels, considerable variability in patterns of disease exist

Patterns of infra-popliteal anatomy in CLI: what to allow in studies?

- Stenosis/occlusion of the distal popliteal/TP trunk
- Stenosis of multiple vessels
- Occlusions of 1 or 2 vessels with diseased remaining vessel to foot
 - Last remaining vessel is the peroneal which incompletely collateralizes AT/PT at the ankle
- Patent single AT or PT to the foot, but incomplete plantar arch results in ischemic dermatomes

Summary of challenges

- Evolving standard of care away from surgery
- The established primary endpoint is not well defined, not well described according to patency, and not well differentiated
- Time course of follow-up may be too short to establish value of patency
 - Possible reformation of wounds is countered by subject deaths
- Marked heterogeneity in various aspects of CLI intervention
- Above combine to make statistical assumptions less well defined, thus requiring more patients, longer trials, and making success less certain

Possible solutions

- Combine limb-salvage with another meaningful endpoint (e.g., patency, wound healing)
- Be prescriptive regarding intervention to reduce heterogeneity
 - Vessel location
 - Number of vessels
 - Specify allowed anatomy
 - Limit Rutherford class inclusions
- These will increase time course of enrollment, but should allow proof of the value of patency

Thank you

Overview

- Infra-popliteal anatomy and implications
- Critical limb ischemia definitions
- Importance of limb salvage
 - Consequences of amputation
- Prior interventional results
 - Laser
 - Cryoplasty
 - BASIL
- Randomized trial design challenges

Critical limb ischemia: definitions

- Rutherford classification
 - R4: Resting symptoms
 - R5: Minor tissue loss
 - R6: Major tissue loss
- Fontaine classification
 - FIII: Resting symptoms
 - FIV: tissue loss

Rutherford 5

CARDIOVASCULAR RESEARCH

Prognosis after amputation

 2 year mortality rates 40%-50% following major amputation

Overview

- Define the typical trial design for new devices
- Present representative available data on infra-popliteal therapy
- Define unique regulatory challenges based on 3 characteristics of infra-popliteal disease
 - Variability in natural history among classifications
 - Anatomic variability
 - Clinically relevant endpoints

BASIL Results: Mortality

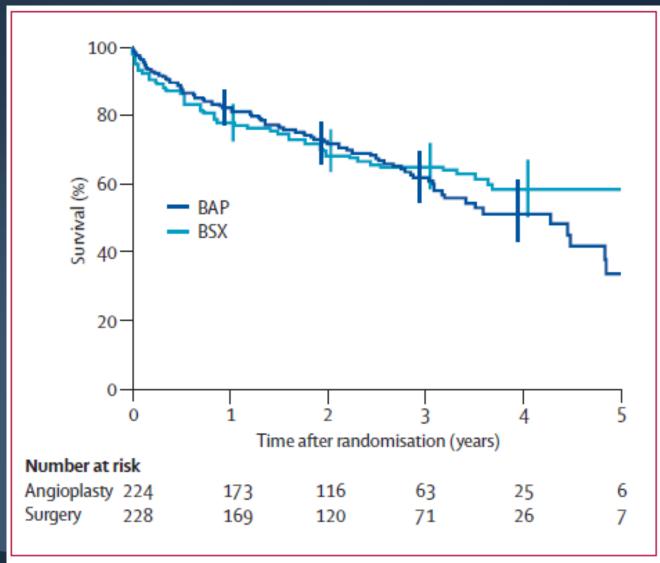


Figure 3: All-cause mortality after bypass surgery and balloon angioplasty

