Angiographic Assessment of Bifurcation Lesions

Young-Hak Kim, MD, PhD

Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

CVRF Clinical Trial Center

President

Business Department (Budget, Billing, Contracts)

Independent Angiographic And IVUS Analysis

IVUS/QCA Core Lab

(Clinical Trial Assistant)

СТА

ardioVascular Research Foundation

nen

Case Report Form of Angiographic Analysis

CARDIOVASCUL	AR RESEARCH FOUNDATION	CARDI
Study name: Site : Patient ID: Cath date:		Study name: Site : Patient ID: Cath date:
	Image	Qualit
Catheter frame #	Arterial frame #	measur
		Eccentric Bend Bend Thrombus Calcification Cleration Aneurysm Intimal flap Ectasia Pre-TIMI Frames Frames (corr)
		Bifurcation Side branch SBPreDS
 Director / Fellow / Technician	 Date	1 Director / Fellow / Technician

CARDIOVASCULAR RESEARCH FOUNDATION

Study name: Site : Patient ID: Cath date: Qualita		Site: Location: Site: Si] U-BSX 2=Mid] 3=Distat; 4=Ostial]]] Fr
Morpho	logy	2	QCA	
Eccentric Bend Thrombus Tortuosity Calcification Ulceration Aneurysm Intimal flap Ectasia	D=Conc 1=Ecc D-180 D=Absent; 1=Pres D=None; 1=Mod; 2=severe D=None/mild; 1=Mod; 2=severe D=Absent; 1=Pres D=Absent; 1=Pres D=Absent; 1=Pres D=Absent; 1=Pres	Prox Nor Distal Nor Inter nor A Lesion len	mal mal ALD ıgth	
Pre-TIMI Frames (corr) Bifurcation Side branch SBPreDS	TIMI 0-3 0 200 0 200 0, A-> F CASS %			
tor / Fellow / Technician		Date		2

Syntax score (newly developed system)

takes into account the heterogeneity of coronary lesion complexity based on the lesion's characteristics .

Sianos et al, EuroIntervention 2005;1:219-227 Valgimigli et al, Am J Cardiol 2007;99:1072-1081 Serruys et al, EuroIntervention 2007;3:450-459 BARI classification of coronary segments Leaman score, Circ 1981;63:285-299 Lesions classification ACC/AHA, Circ 2001;103:3019-3041 Bifurcation classification, CCI 2000;49:274-283 CTO classification, J Am Coll Cardiol 1997;30:649-656

offer of the second sec

Pieter Kappetein, MD, PhD presented the two-year results of the SYNTAX trial at the European Society of Cardiology Meeting, Barcelona on September 2nd, 2009. SYNTAX was featured in a Clinical Trial webcast. Key findings included:

- In the SYNTAX randomized patients, 2-year MACCE rates remained significantly higher for PCI than CABG, mainly driven by higher repeat revascularization in the PCI arm.
- P MACCE rates at 2 years not significantly different for patients with a low (0-22) or intermediate (23-32) baseline SYNTAX Score treated with either PCI or CABG; for patients with high SYNTAX Scores (≥33), MACCE continued to be increased at 2 years in patients treated with PCI compared with CABG
- ⇒ In the predefined subgroups of patients with either 3VD or LM disease:
 - In the LM group, safety outcomes and MACCE rates were similar for PCI and CABG, but the 2-year revascularization rate was lower in the CABG group.
 - ⇒ Safety outcomes (death/CVA/MI) in the 3VD group were similar for PCI and CABG, but the 2-year revascularization and MACCE rates favored CABG.

The full presentation can be viewed or downloaded here:

SYNTAX SCORE

CARDIQLYSIS Scientific

Current lesion: 1/1

SCORE

SYNTA

- @ X

SIS Scientific

CARDIALYSIS

3. Specify which segments are diseased for <u>lesion 1</u>. (i) Click on the coronary tree image to select or unselect segments.

		Lesion:	1
	Segments:		
RCA	RCA proximal	1	
	RCA mid	2	
	RCA distal	3	
	Posterior descending	4	
	Posterolateral from RCA	16	
	Posterolateral from RCA	16a	
	Posterolateral from RCA	16b	
	Posterolateral from RCA	16c	
LM	Left main	5	
LAD	LAD proximal	6	
	LAD mid	7	
	LAD apical	8	
	First diagonal	9	
	Add. first diagonal	9a	
	Second diagonal	10	
	Add. second diagonal	10a	
ιсх	Proximal circumflex	11	
	Intermediate/anterolateral	12	
	Obtuse marginal	12a	
	Obtuse marginal	12b	
	Distal circumflex	13	
	Left posterolateral	14	
	Left posterolateral	14a	
	Left posterolateral	14b	
			next

Click here for segment definitions

Bifurcation

A bifurcation is a division of a main, parent, branch into two daughter branches of at least 1.5mm. Bifurcation lesions may involve the proximal main vessel, the distal main vessel and the side branch according to the Medina classification. The smaller of the two daughter branches should be designated as the 'side branch'. In case of the main stem either the LCX or the LAD can be designated as the side branch depending on their respective calibres. Bifurcations are only scored for the following segment junctions: 5/6/11, 6/7/9, 7/8/10, 11/13/12a, 13/14/14a, 3/4/16 and 13/14/15. **No septal branch**

'Specify which segments are diseased for lesion X': one should fill out only those segment numbers of the bifurcation that have a Diameter Stenosis 250% in direct contact with the bifurcation.

≥ **50% stenosis**

Example 1

- One lesion
- one segment number involved/diseased (= segment: 7).
- Bifurcation 'Yes'
- Medina class: 0, 1, 0

Bifurcation Angle Measures

Angle between Prox PV and SB

Angle between Distal PV and SB

Size of the ostium changes with the angle of bifurcation

Greater Bifurcation Angle associated with higher mortality and MACE with Crush Technique

133 pts undergoing crush stenting:

- 66 pts with low angle (<50 degrees)</p>
- 67 pts with high angle (>50 degrees)

Kaplan-Meier plot comparing MACE-free survival up to 648 days between the low-angle group (BA ${<}50^\circ$ and high-angle group (BA ${\geq}50^\circ$).

A Kaplan-Meier plot indicating survival up to 648 days in the low-angle (BA $<50^{\circ}$) and high-angle group (BA $\geq 50^{\circ}$).

Bifurcation angle was an independent predictor of MACE

CardioVascular Research Foundation

Dzavik V et al. Am Heart J. 2006

ASAN Medical Center

3-D Morphology

Case Report Form of Angiographic Analysis

CARDIOVASCUL	AR RESEARCH FOUNDATION		
Study name: Site : Patient ID: Cath date:			
	Image		
Catheter frame #	Arterial frame #		
		1	_
irector / Fellow / Technician	Date		Din

CARDIOVASCULAR RESEARCH FOUNDATION

Study name: Site : Patient ID: Cath date:		Site: Location: Frame: rojection: neter size:] CASS 1=Prox; 2=Mid 3=Distal; 4=Ostial]]] Fr
	PRE-PROCEDU	RI QI Me	uantitat easuren	nent
Morpho	logy		QCA	
Facaptria	0=Copc 1=Ecc	Prox No	rmal	
Band	0-180	Distal No	rmal	
]] 0=Absent; 1=Pres	Inter no	rmal	
Tortuosity) 0=None; 1=Mod; 2=severe		MLD	
Calcification	0=None/mild; 1=Mod; 2=severe	Lesion le	ngth	
	0=Absent; 1=Pres			
Aneurysm	0=Absent; 1=Pres			
Intimal flan	J 0=Absent; 1=Pres			
Ectasia) U=Absent, 1=Pres			
Pre-TIMI	TIMI 0-3			
Frames	0 200			
Frames (corr)	0 200			
Bifurcation	0, A-> F			
Side branch	CASS			
SBPreDS	, %			
				2
)irector / Fellow / Technician	10	Date		2

Assessment of Diameter Stenosis

 $\begin{aligned} \text{MLD} &= 1.2 \text{ mm} \\ \text{Mean reference: } [3.5 \text{mm} (\text{PR}) + 2.5 \text{mm} (\text{DR})] / 2 &= 3.0 \text{ mm} \\ \text{Interpolated reference: } 3.2 \text{ mm} \\ \text{DS} &= [3.2 \text{mm} (\text{int. ref.}) - 1.2 \text{mm} (\text{MLD})] \text{X} 100 / 3.2 (\text{int. ref.}) = 63\% \end{aligned}$

QCA Limitation: Step Down

Method to determine the proper reference diameter for each individual segment

The "Step down" phenomenon is a major limitations of Standard QCA when applied to bifurcation analyses

QCA Limitations: Step Down

Problem:

Results in:

Mismatch between prox vessel and distal vessel Overestimated Reference Overestimated %DS Better for lesion length

Solutions: Use Distal Reference or Limit analysis to distal PV

QCA Limitation: No Proximal Reference

Problems: Results in:

Solution:

Vessel contour track into MLD Cannot assess lesion length Underestimated reference Underestimated %DS Use Distal Reference

Incorrect Measurement

CardioVascular Research Foundation

COLLEGE MEDICINE

Limitation: poor correlation with functional ischemia !

Pre-PCI %DS vs. Post-Stenting SB FFR

Koo et al. Circ Cardiovasc Interv 2010;3:113-9

AMC Data Ahn et al (JACC submission) 2011

Challenge in measuring Bifurcations

Innovative derivation of RVD in carina segment

Challenge in measuring Bifurcations Innovative derivation of RVD in carina segment

Y Model: LM

Edge Segment Definitions

	Length	Position MLD	MLD	Ref D	% DS	Distance	Max D	Mean D
						MLD-stent		
Segment 1	5.00	0.523	3.843	3.728	-3.07	0.174	3.845	3.844
Segment 2	18.50	6.099	3.407	3.709	8.14		3.854	3.604
Segment 3	6.53	25.724	2.560	2.462	-3.96		3.231	2.975
Segment 4	5.00	27.485	2.229	2.443	8.76	1.761	2.560	2.380
Segment 5	10.63	19.253	1.786	2.368	24.57		5.400	2.160
Segment 6	5.00	30.012	1.685	1.944	13.31	1.056	2.035	1.815
Segment 7	5.00	24.198	2.876	2.478	-16.04		3.231	3.049
Segment 8	5.00	19.253	1.786	2.368	24.57		5.400	2.158
Segment 9	19.20	6.099	3.407	3.709	8.14		3.854	3.613
Segment 10	11.53	27.485	2.229	2.443	8.76		3.231	2.717
Segment 11	15.63	19.253	1.786	2.368	24.57		5.400	2.050
	And in case of the local division of the loc							

Dedicated Bifurcation QCA

Dedicated Bifurcation Software

Bifurcation Core Analysis

Parent Vessel 1. Prox PV Edge 2. Prox PV Stent 3. Distal PV Stent 4. Distal PV Edge C 0 0 0 0 0 0 Side Branch 1. SB Stent 2. SB Stent edge

Prox Core Edge Core Quadrangle Core Triangle Distal Core Edge

Bifurcation Core Triangle as a Measure for Carina Shift, Ostial Scaffolding, and Ostial Preservation

Conclusions

- Angiography has many limitations in assessing bifurcation lesions.
- Novel QCA software is designed to accurately derive reference measures and minimal luminal diameters.
- Given the asymmetry at the MV and SB transition zone, traditional QCA miss dimensions relevant to the ostial intersection.
- Bifurcation Core area and angle measures provide ostial SB geometry changes from baseline to final treatment.
- This new QCA analysis should provide critical information to guide intervention procedures and new device development.

