

TCTAP 2012 Fellowship Course Bifurcation PCI

Flow at Coronary Left Main Bifurcation After One and Two Stenting

Kiyotaka Iwasaki, Ph.D

Associate Professor, Waseda University TWIns, Center for Advanced Biomedical Sciences

Novel In vitro Methodologies for the Investigation of Practical Performances of Coronary Stents

Flow Visualization

Durability Test

Stenotic Artery

Potential Cause of Thrombosis at Bifurcation Iwasaki K, AHA Scientific

Session 2010

Fracture-Resistant Stent Platform

Iwasaki K, ACC 10'

Optimal Stent Deployment Method

Iwasaki K, AHA Scientific Session 2009

Online article and related content current as of July 7, 2010.

Sirolimus-eluting stent

Incidence, Predictors, and Outcome of Thrombosis After Successful Implantation of Drug-Eluting Stents

0.50 (0.22-1.10)

0.09

Ioannis Iakovou; Thomas Schmidt; Erminio Bonizzoni; et al.

JAMA. 2005;293(17):2126-2130 (doi:10.1001/jama.293.17.2126)

Table 2. Univariate Predictors of Cumulative Stent Thrombosis Incidence of Hazard Ratio Ρ Stent Thrombosis. Variables No./Total (%) (95% Confidence Interval) Value Categorical Variables 152 (52-442) Premature antiplatelet 5/17 (29) < .001therapy discontinuation 7.49 (1.78-31.49) .006 Prior brachytherapy 2/23 (8.7) Renal failure <.001 8/127 (6.2) 11.67 (5.17-26.35) Bifurcation with 2 stents 13/336 (3.9) 4.62 (2.22-9.62) <.001 18/507 (3.6) < .001Bifurcation lesion 6.50 (3.02-13.98) Unprotected left main artery .81 0.95 (0.67-1.36) 3/92 (3.3) Diabetes 15/591 (2.5) 3.45 (1.66-7.18) <.001 Thrombus 1/50 (2) 1.58 (0.21-11.65) .65 .58 Unstable angina 8/590 (1.4) 1.24 (0.56-2.73) 22/1907 (1.2) 0.80 (0.30-2.11) .66 Male sex B2 or C type 21/1698 (1.2) 1.19 (0.48-2.94) .69 Calcification .58 4/392 (1) 0.74 (0.26-2.14)

9/1062 (0.8)

Background

Coronary bifurcation lesions and two stenting at coronary bifurcation are identified as predictors of stent thrombotic events throughout real-world clinical data.

lakovou, et al. JAMA 293(17), 2126-2130, 2005.

(1) The reason for incidence of stent thombosis after two-stenting has not been well understood yet.

(2) There is little information about influence of onestent and two-stent at LM bifurcation on flow.

Objective

To assess potential flow disturbances after twostenting and one-stenting in an elastic threedimensional stenotic bifurcated artery replica, using a physiological circulation simulator

- (1) Develop an elastic 3-D stenotic coronary bifurcated replica
- (2) Develop a physiological coronary circulation simulator
- (3) Investigate influences of two-stent and onestent at bifurcation on flow characteristics

Kawasaki T, et al. The bifurcation study using 64 multislice computed tomography, Catheter Cardiovasc Interv. 2009;73(5):653-8.

Results of bifurcation angles (n=209)

Bifurcation	Average angle
∠LMT-LAD°	143±13
∠LMT-LCx°	121±21
∠LAD-LCx°	72±22

Development of a Stenotic Bifurcated Artery Model :Three-Dimensional Elastic Model

Mini-Crush Stenting in the Stenotic Bifurcation Model

Stenotic Bifurcation

Post-Stenting

- 1. LMT~LCx: Driver 3.0mm × 18mm
- 2. LMT~LAD: Driver 3.5mm × 24mm
- 3. LMT~LCx: QUANTUM MAVERICK 2.0mm×15mm

4. Final KBT: Simultaneous Kissing Balloon Post-dilation

Micro-CT Images after Two Stenting in the Elastic Stenotic Bifurcated Artery Replicas

Coronary Circulation Simulator for Flow Visualization at Bifurcation

Mean flow rate	55mL/min
Flow ratio	50%:50%
Pressure	120/80mmHg
Heart rate	80bpm
Working fluid	Glycerol solution (1.1g/cm ³ ,4.0cP)
Seeding particle	Fluorescent particle(1.1g/cm ³ ,13µm)
Time resolution	500Hz
Space resolution	170µm

Flow Observation at Coronary Artery Bifurcation

Normal Bifurcation

Mini-Crush Stenting

Stenotic Bifurcation

Modified-T Stenting

Flow Observation at Bifurcation [High Magnification]

Carina

Mini-Crush Stenting

Stenotic Bifurcation

Modified-T Stenting

Comparison of Flow Velocity Distributions at Carina

0.08

0.07

0.06

0.05

0.05

0.04

0.03

0.03

0.02

0.01

0.01

Normal Bifurcation

Mini-Crush Stenting

	Velocity m/	
		0.20
		0.18
		0.16
face in the second second		0.15
		0.13
		0.11
		0.09
		0.07
		0.05
		0.04
		0.02

Stenotic Bifurcation

0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

Modified-T Stenting

Comparison of Wall Shear Rate along Arterial Wall: from Carina Tip to Downstream

Pathological Findings at Bifurcation Lesions

The Impact of Flow Distribution on Atherosclerosis and Arterial Healing After Stent Implantation

Gaku Nakazawa, MD,* Saami K. Yazdani, PHD,* Aloke V. Finn, MD,† Marc Vorpahl, MD,* Frank D. Kolodgie, PHD,* Renu Virmani, MD* Gaithersburg, Maryland; and Atlanta, Georgia

Table 2 Morphometric Comparison Between Flow Divider Versus Lateral Wall In DES and BMS

	DE	S	BMS				p Value for	
	(12 Lesions, 17 Stents)			(14 Lesions, 18 Stents)			DES vs. BMS	
	Flow Divider	Lateral	p Value	Flow Divider	Lateral	p Value	Flow Divider	Lateral
Neointimal thickness (mm)	0.07 (0.03–0.15)	0.17 (0.09–0.23)	0.001	0.26 (0.16–0.73)	0.44 (0.17–0.67)	0.25	0.0002	0.004
Fibrin deposition (% struts)	<mark>60</mark> (21–67)	17 (0–55)	0.01	<mark>8</mark> (0–33)	3 (0–21)	0.21	0.008	0.19
Uncovered struts (% struts)	<mark>40</mark> (16–76)	0 (0–15)	0.001	<mark>0</mark> (0–21)	0 (0–0)	0.10	0.004	0.38

Distinct Slow Flow Velocity at the Crushed Lesion

Velocity m/s

Flow at Bifurcation: One stent with/without KBI

One-stent (Non KBI)

One-stent plus KBI

Flow Tract Observation using Micro CT

Flow Tract Observation using Micro CT

Summary

- (1) In vitro pulsatile flow study using elastic threedimensional stenotic bifurcated artery replica demonstrated that two stenting at coronary bifurcation yielded distinctly slow flow region at carina.
- (2) When mini-crush stenting was performed, distinct slow flow velocity region was observed between the crushed two independent stents.
- (3) Influence of stent struts in flow domain especially after one stenting on stent thrombosis should be further investigated.
- (4) These data would partially give an explanation of higher incidences of thrombotic events at bifurcation after two stenting.

Acknowledgements

Funding Sources:

- (1) Health Science Research Grant (H20-IKOU-IPAN-001) from Ministry of Health, Labour and Welfare, Japan
- (2) "Promotion of Environmental Improvement for Independence of Young Researchers" activities under the Special Coordination Funds for Promoting Science and Technology provided by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

