Clinical Implementation of IVUS

Soo-Jin Kang, MD., PhD.

University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Disclosure Statement of Financial Interest

I, Soo-Jin Kang DO NOT have a financial interest /arrangement or affiliation with organizations that could be perceived as a real or apparent conflict of interest in the context of the subject

Meta-analysis: Impact of IVUS on Clinical Outcomes IVUS- vs. Angio-guided PCI

	Voor	DOT	Non- Pt. No		HR (p value)				
	rear	KUI	RCT		MACE	Death	MI	ST	TLR
Zhang et al Eurointerv	2012	1	10	19,619	0.87 (0.008)	0.59 (<0.001)	0.82 (NS)	0.58 (<0.001)	0.90 (NS)
Klersy et al. Int J Cardiol	2013	3	9	18,707	0.80 (<0.001)	0.60 (<0.001)	0.59 (0.001)	0.58 (0.007)	0.95 (NS)
Jang et al. JACC interv	2014	3	12	24,869	0.79 (0.001)	0.64 (<0.001)	0.57 (<0.001)	0.59 (0.002)	0.76 (0.01)
Ahn et al. Am J Cardiol	2014	3	14	26,503	0.74 (<0.001)	0.61 (<0.001)	0.57 (<0.001)	0.59 (<0.001)	0.81 (0.046)

COLLEGE MEDICINE

ADAPT-DES 1-year Outcomes

Witzenbichler et al. Circulation 2014;129:463-70

Cardio Vascular Research Foundatio

Clinical Implementation of IVUS

Treat or Not? PCI Optimization IVUS- vs. OCT-guided PCI

Meta-analysis of 11 Clinical Trials

1759 patients with 1953 lesions

Predict FFR<0.80 Weighted MLA 2.61mm² Pooled sensitivity 79% Pooled specificity 65%

Smaller Cut-off than Used Poor Accuracy

Nascimento et al. Catheter Cardiovasc Interv 2013 (in press)

CardioVascular Research Foundation

All Subgroup-specific MLA, Accuracies <70-75%

Kang et al. Am J Cardiol 2012;109:947-5

Why Mismatch

Nov 2009-Jun 2011, 1000 consecutive patients (1129 lesions with DS >30%) who underwent pre-PCI IVUS and FFR (ClinicalTrials.gov NCT01366404)

Factors Affecting FFR

	Beta	p-value	95% CI
Age	0.008	<0.001	0.004 - 0.011
LAD location	-0.386	<0.001	-0.462 - 0.311
Lesion length	-0.006	<0.001	-0.009 - 0.003
Minimal lumen area	0.185	<0.001	0.149 - 0.222
Plaque burden	-0.006	<0.004	-0.009 - 0.003
Plaque rupture	-0.165	0.020	-0.302 - 0.027

Park et al. JACC interv 2012;5:1029-36

New LM MLA 4.5 mm²

Matched with FFR <0.80 Ostial and Shaft LM Disease (N=112)

Sensitivity	79%
Specificity	80%
PPV	83%
NPV	76%

IVUS-MLA can be alternatively used in pure LM lesions

Park SJ, Ahn JM et al. JACC Interv (in press)

Stent Strategy for LMCA Bifurcation

How big? How severe?

CardioVascular Research Foundation

LAD FFR

0.72

LCX FFR

0.78

Distal LM EEMφ 6.2mm MLA 3.0mm²

LCX os minimal

COLLEGE MEDICINE

LAD LCX

LAD os EEMφ 5.2mm MLA 6.0mm²

SB-IVUS in Non-LMCA Bifurcation

Similar angiography Different IVUS

Pre-PCI MLA 3.0mm²

Pre-PCI MLA 2.0mm²

CardioVascular Research Foundation

Predictor for Distal Embolization

Superficial calcium

Deep calcium

Calcified nodule

0

Mechanism of In-stentRestenosisUnderexpansionIntimal HPEdge Restenosis

Predictors for Functionally Significant In-stent Restenosis (Positive SPECT)

175 patients with ISR of single coronary artery

In-seg MLA≤1.9mm²

sensitivity 67% specificity 75% accuracy 70% sensitivity 67% specificity 69% accuracy 68%

Kang et al. JACC Cardiovasc Imaging 2013 in press

%IH>68%

CardioVascular Research Fou

PCI Optimization

IVUS Predictors of DES Early Thrombosis & Restenosis

	Early Thrombosis	Restenosis
Small MSA or MLA or underexpansion	 Fujii et al. J Am Coll Cardiol 2005;45:995-8 Okabe et al. Am J Cardiol. 2007;100:615-20 Liu et al. JACC Cardiovasc Interv. 2009;2:428-34 Choi et al. Circ Cardiovasc Interv 2011;4:239-47 	 Sonoda et al. J Am Coll Cardiol 2004;43:1959-63 Hong et al. Eur Heart J 2006;27:1305-10 Doi et al JACC Cardiovasc Interv. 2009;2:1269-75 Fujii et al. Circulation 2004;109:1085-1088 Kang et al. Circ Cardiovasc Interv 2011;4:9-14 Choi et al. Am J Cardiol 2012;109:455-60 Song et al. Catheter Cardiovasc Interv, in press
Edge problems (geographic miss, secondary lesions, large plaque burden, dissections, etc)	 Fujii et al. J Am Coll Cardiol 2005;45:995-8 Okabe et al., Am J Cardiol. 2007;100:615-20 Liu et al. JACC Cardiovasc Interv. 2009;2:428-34 Choi et al. Circ Cardiovasc Interv 2011;4:239-47 	 Sakurai et al. Am J Cardiol 2005;96:1251-3 Liu et al. Am J Cardiol 2009;103:501-6 Costa et al, Am J Cardiol, 2008;101:1704-11 Kang et al. Am J Cardiol 2013;111:1408-14 Kobayashi et al. ACC2014

Underexpansion Predicts DES Restenosis

Song et al. Catheter Cardiovasc Interv 2012 (in press)

🔨 Cardio Vascular Research Foundatio

LM Stent Optimization

on a segmental basis

Kang et al. Circ Cardiovasc Interv 2011 2011;4:1168-74

Two-Stent in LMCA Bifurcation

9-month ISR

2-yr MACE-free Survival

Kang et al. Circ Cardiovasc Interv 2011 2011;4:1168-74

CardioVascular Research Foundation

Pre-procedure

Promus-E 4.0x20mm, high pressure balloon

LM ostium EEM>8.0mm

CardioVascular Research Foundation

Angiography Poorly Predicts Underexpansion

LAD 5.0mm² POC 6.3mm² Prox LM 6.8mm² LCX 4.0mm² Kang et al. Am J Cardiol 2011;107:367-73

Intravascular Ultrasound Predictors for Edge Restenosis After Newer Generation Drug-Eluting Stent Implantation

Specificity 86%

422 R-ZES

813 EES

Reference segment residual PB<55% is useful to determine the optimal landing site of stent deployment

CardioVascular Research Foundation

Kang et al. Am J Cardiol 2013 in press

IVUS-detected PCI Complication

Dissection

Plaque prolapse

Hematoma

Thrombosis

Perforation

Deformation

IVUS- vs. OCT-Guided PCI

Ability to Detect Suboptimal Findings (OPUS-CLASS)

Post-PCI	IVUS	ОСТ	р
Malapposition	14%	39%	<0.001
Tissue protrusion	18%	95%	<0.001
Dissection	0%	13%	0.013
Thrombus	0%	13%	0.013

Kubo et al. JACC imaging 2013;6:1095-104

IVUS- vs. OCT-guided PCI Prospective Randomized study

	OCT-guided	IVUS-guided	р
Total procedural time, min	40±16.4	47.0±17.6	0.09
Total fluroscopy time, min	20.4±8.4	24.8±10.4	0.05
Contrast media volume, ml	130.0±57.9	146.9 ± 60.0	0.24
Good visibility of EEM			
at proximal reference	22 (63%)	35 (100%)	<0.001
at MLA site	3 (9%)	33 (94%)	<0.001
at distal reference	22 (63%)	35 (100%)	< 0.001

Poor visibility of EEM may affect device size, deployment pressure and post-balloon dilation

Habara et al. Circ Cardiovasc Interv 2012;5:193-201

IVUS- vs. OCT-guided PCI Post-stenting Data

	OCT-guided	IVUS-guided	р
Angiographic DS,%	7.7±5.8	5.0±4.5	0.03
Post-stenting IVUS			
Min. stent area,mm ²	6.1±2.2	7.1±2.1	0.04
Mean stent area, mm ²	7.5±2.5	8.7±2.4	0.04
Residual PB (prox) >50%	42.2±11.6	36.5 ± 8.6	0.02
Residual PB >50%, prox	8 (23%)	1 (3%)	0.03
Post-stenting OCT			
Min stent area, mm ²	7.2±2.8	8.4±2.4	0.03
Incomplete apposition,%	0.4±0.7	0.6±0.8	0.34

Habara et al. Circ Cardiovasc Interv 2012;5:193-201

CardioVascular Research Foundatio

Intravascular Ultrasound Versus Optical Coherence Tomography Guidance

Ron Waksman, MD, Hironori Kitabata, MD, Francesco Prati, MD, Mario Albertucci, MD,

Stent optimization criteria	Standardized by IVUS
Penetration (EEM visualization)	IVUS better
Need for contrast media	OCT requires
Resolution (additional information)	OCT better

IVUS remains the more trusted modality for stent sizing and optimization until OCT own criteria are validated with clinical outcomes

Summary

- IVUS-MLA poorly matched with FFR. In pure LM lesions, IVUS-MLA can be alternatively used
- IVUS is useful to assess plaque vulnerability and risk of peri-procedural MI
- Underexpansion and inflow/outflow tract disease are predictors of stent failure, thus they should be treated during PCI by IVUS-guidance
- With sufficient data and solid optimization criteria, IVUS-guided PCI improves patient outcomes

