Update on the role of drug eluting balloons

William A. Gray MD Director of Endovascular Services Associate Professor of Clinical Medicine Columbia University Medical Center The Cardiovascular Research Foundation

Columbia University Medical Center

Update

- SFADe novo
 - ISR
- BTK
 De novo
- Combination lesions
- Opportunities

TRIAL	THUNDER	FEM-PAC	Levant 1	PACIFIER
DCB	Medrad/Cotavance	Medrad/Cotavance	Lutonix/Moxy	Medtronic/InPact
Number of patients	154	87	101	91
Rutherford category	1-5	1-4		2-5
Primary endpoint	6/12 LLL	6/12 LLL	6/12 LLL	6/12 LLL
Primary outcomes	0.4+/- 1.2mm vs. 1.7+/- 1.8mm (p<0.001)	0.5+/- 1.1 vs. 1.0 +/-1.1mm (p= 0.031)	0.46mm vs. 1.09mm (p=0.016)	-0.05mm vs. 0.61mm (p=0.003)
Mean lesion length	7.5cm	6cm	8.1cm	7cm
Diabetics	50%	47%	47%	43%
Ca++ (mod/severe)	46%	52%	n/a	64%
Occlusions	50%	13%	41%	23%
Restenosis	22% vs. 14% ISR*	27% vs. 7% ISR	11%	10% vs.31% (p=0.03)
12 month patency	75%	81% (6 mo)	72% (6 mo)	Pending

PCB Trials in the SFA Territory Angiographic Late Loss at 6 Months

Thunder <u>5 Year</u> Sub-Study Analysis

	Uncoated Balloon (Mean ± SD)	Pac Balloon (Mean ± SD)	P-value
Intermediate TLR	44%	9%	0.08
Diameter Stenosis [%]	55 ± 34	39 ± 23	0.45
MLD [mm]	2.1 ± 1.7	3.0 ± 1.7	0.25
LLL [mm]	1.5 ± 1.3	0.7 ± 1.9	0.54

Effectiveness of Paclitaxel Coated Balloons for Treating In Stent Restenosis (The PACUBA Trial)* <u>(EuroCor)</u>

PTA in-stent restenosis: 70% restenosis at 6/12

1: 1 RCT

In-stent restenosis SFA/popliteal (P1)

Rutherford 2 - 5

Freeway 0.035" (EuroCor)

‡ Schillinger M JEVT 2003; 10:288-297 *Lammer J

Preliminary Results: PACUBA (Eurocor)

	PTA	DCB
Patients	15	21
Age (years)	70	68
Lesion length (cm)	8.1	8.5
Total occlusions	5	5
6 months PP rate	37%	78%

100

IN.PACT in SFA In Stent Restenosis

E.Stabile LINC 2012

Singe center registry of IN.PACT Admiral for SFA ISR

(Eugenio Stabile MD – Mercogliano, Italy)

•Primary Endpoint: 1y Prim. Patency

- •39 patients
 - LLC / CLI = 79.5% / 20.5%
 - Diabetics = 48.7%
 - Mean Stent length = 181.2 mm

12-month Results

- 12m TLR = 7.8%
- 12m Rest Rate = 7.8%

<u>**DEFINITIVE AR</u>** study (Zeller, Tepe): RCT infrapopliteal atherectomy &DCB vs. DCB (Cotavance)</u>

The Rock Trial (Zeller, Tepe): RCT DCB & rotational atherectomy vs. DCB & BMS vs. PTA in calcified & long occlusions

The SPORTS study (Tepe):

RCT Cook Zilver PTX vs. Medtronic InPact DCB

- Mechanically re-canalize artery without overstretch
- Remove diffusion barrier
 → better & more effective, homogenous drug uptake

Reduce likelihood of bail-

Thunder Five Year Outcomes:

Freedom from TLR: Kaplan-Meier

Presented by G Tepe, TCT 2011

Singe center registry of IN.PACT Admiral + Atherectomy for highly calcified de-novo SFA lesions

(Angelo Cioppa MD - Mercogliano, Italy)

•Primary Endpoint: 1y Prim. Patency

•30 patients

- LLC / CLI = 6% / 94%
- Diabetics = 60%
- Mean lesion length = 115 \pm 35 mm
- Tot Occlusions = 13%
- Calcium Score* 3 = 100%

dist. Filter + TurboHawk + IN.PAC

bail-out Stenting = 7%

12-month FU •Primary Patency = 90% •TLR = 10% •Second. Patency = 100%

* O= absence of calcium; 1= calcium on one side of lumen <1cm length; 2= calcium on both side <1cm length; 3=calcium on both side >1 cm length

Patency and Limb Salvage

Poor correlation between patency and limb salvage due to a variety of concomitant / factors concurring to wound healing

Columbia University Medical Center

Leipzig DEB BTK Registry

Singe center Registry of IN.PACT Amphirion for long BTK lesions / occlusions	27.4% angiog months with	raphic Resten 17.3 TLR rate	osis Rate at 3 at 12 months
(Andrej Schmidt MD – Leipzig, Germa	ny)	DEB (angio subgroup)	PTA* (historical group)
•Prim. Endpoint: 3m Angio Rest. Rate		3m Angiog	graphic FU
•104 patients	Restenosis (>50%)	27.4%	69%
Angio subgroup:	Full-segment Resten.	10%	56%
CLI = 82.6%	Restenosis Length	64 mm	155 mm
–Diabetics = 73%		12m Clinical	15m Clinical
–Avg Lesion length = 173 \pm 87 mm		FU	FU
-Tot Occlusions = 61.9%	Deaths	16.3%	10.5%
	Limb Salvage	95.6%	100%
	Clinical Improvement ⁽¹⁾	91.2%	76.5%
	Compl. wound healing	74.2%	78.6%
	TLR	17.3%	50%

*A.Schmidt et al. CCI 2010

A.Schmidt et al. JACC 2011

DEBATE Randomized Trial

Single center RCT of IN.PACT Amphirion vs. PTA in BTK-CLI-**DIABETICS** de-novo lesions

(Francesco Liistro MD – Arezzo, Italy)

•Prim. Endpoint: 12m Angio Rest. Rate

•120 patients (preliminary results)

•Baseline (DEB vs. PTA):

 $\bullet CLI = 100\%$

•Diabetics = 100%

•Mean lesion length = 121 \pm 83 vs. 123 \pm 68 (p=ns)

•Tot Occlusions = 80% vs. 82% (p=ns)

•Pre-dinat. = 100%

CARDIOVASCULAR RESEARCH OUNDATION

IN.PACT significantly reduces Restenosis Rate at 12-month vs. PTA in BTK-CLI-Diabetics

MEDICAL CENTER

DEBELLUM Randomized Trial

Drug Eluting Balloon Evaluation for Lower Limb mUltilevel treatMent

Single center RCT of IN.PACT vs. PTA in MULTILEVEL lower limb disease

(Fabrizio Fanelli MD - Roma, Italy)

- Prim. Endpoint: 6m LLL
- 50 patients
- Fempop / BTK = 76% / 24%
- LLC / CLI = 62% / 38%

IN.PACT shows reduction of restenosis vs. PTA in multilevel (SFA + BTK) disease with and without Stent

Columbia University Medical Center

Opportunities for Improvement

Drug	 All available DCBs use Paclitaxel Change in Paclitaxel form, size or chemical features Drug micro encapsulation or advanced drug systems Alternative drugs (limus-based or others)
Carrier	 Alternative carriers aiming to improve coatings: Reduce total drug concentration Enhance tissue transfer Increasing tissue drug retention
Balloon Catheter	 Plaque modification delivery systems Low-injury balloon techniques Optimized delivery carrier surfaces Local tissue delivery
Others	 Adjunctive technologies Atherectomy & stents Dedicated niche applications Bifurcations, AMI, calcified lesions, etc

Paclitaxel DCB Types Impact on Biological Performance

Coating "A" Crystalline

Coating "B" Amorphous

	Crystalline	Amorphous
Particles Released	+++	++
Uniform Coating	++	+++
Drug Transfer to Vessel	+++	++
Drug Retention vs. Time	+++	+
Biological Effectiveness	+++	?

Separate Variables to be Optimized Crystalline vs Amorphous; Tissue Uptake vs. Retention

CARDIOVASCULAR RESEARCH

Sirolimus-Based Nanocrystal Balloon Coating Technology

CARDIOVASCULAR RESEARCH F O U N D A T I O № Slide courtesy (modified) of Concept Medical Inc

PCB for the Treatment of ISR Angiographic Outcomes (Absence of Stent)

CARDIOVASCULAR RESEARCH

Angiographic Outcomes: PCB Trials for "De Novo" Applications

PEPCAD III: BMS Crimped on PCB (3 μg/mm²) versus Cypher Stent Lutonix De Novo Registry: Pre or Post Dilatation Using PCB (2 μg/mm²)

Angiographic Late Loss (mm)

Binary Restenosis (%)

