

Unprotected Left main Coronary Disease:

Thoughtful Insights

Patrick W. Serruys, MD, PhD

Emeritus Professor of Medicine Erasmus University, Rotterdam, The Netherlands Professor of Cardiology Imperial college, London, UK

> Pannipa Suwannasom, MD Erasmus MC, Rotterdam , The Netherlands

> > Tuesday 28th April 2015 9:08 AM – 9:16 AM Coronary Theater, Level 1

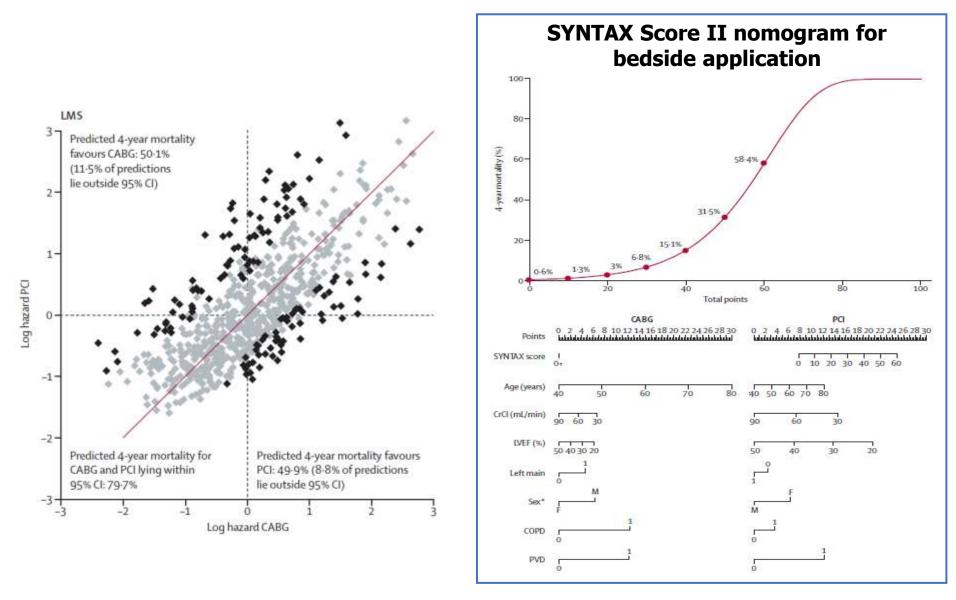
Disclosure Statement of Financial Interest

Patrick W. Serruys, MD, PhD

 \boxtimes I have no relevant financial relationships

Scope of the talk

- Patients selection:
 - PCI vs. CABG, risk score
 - MSCT, IVUS for evaluation severity of Left main disease, FFR-CT
- Long term follow up in clinical trial
- Technical perspective
- Antiplatelet management (old vs. new potent P2Y12)

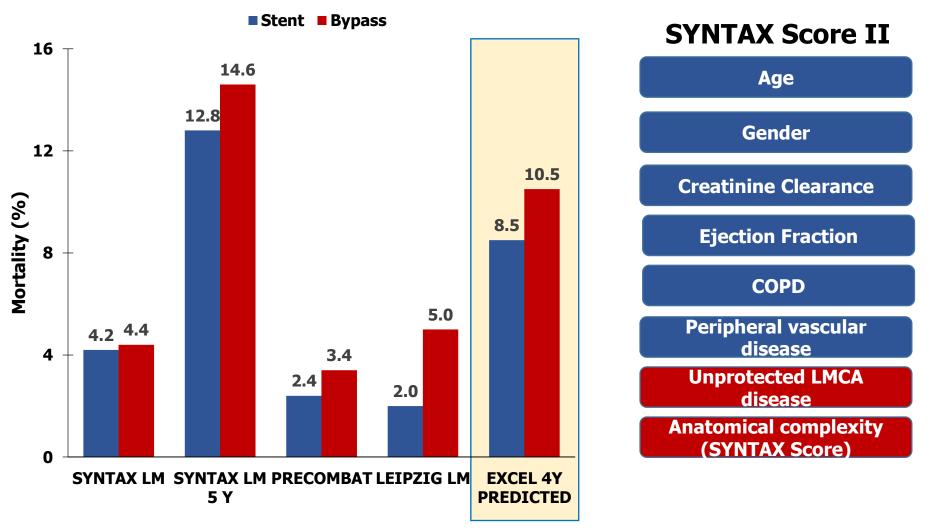

Current Status of LMCA stenting in guideline

2014 ESC guidelines

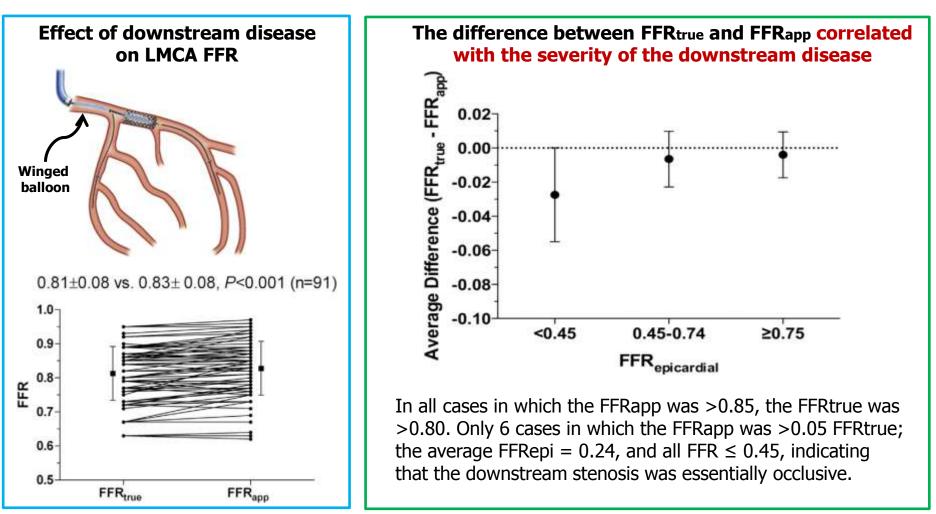
Recommendations according to extent of CAD	CABG		PCI	
	Class ^a	Level⁵	Class ^a	Level ^b
Left main disease with a SYNTAX score ≤ 22.	1	В		B
Left main disease with a SYNTAX score 23–32.	I.	B	lla	В
Left main disease with a SYNTAX score >32.	I	В	Ш	В

Classes of recommendations	Definition Suggested wording to use		Level of	Data derived from multiple randomized	
Class I	Evidence and/or general agreement that a given treatment or procedure is beneficial, useful, effective.	Is recommended/is indicated	evidence A	clinical trials or meta-analyses.	
Class II	usefulness/efficacy of the given		Level of evidence B	Data derived from a single randomized clinical trial or large non-randomized studies.	
Class IIa					
Class IIb	Usefulness/efficacy is less well May be considered established by evidence/opinion.		Level of	Consensus of opinion of the experts and/	
Class III	Evidence or general agreement that the given treatment or procedure is not useful/effective, and in some cases may be harmful.	Is not recommended	evidence C	or small studies, retrospective studies, registries.	

Mortality predictions for CABG versus PCI for each individual patient in the randomized SYNTAX trial


Farooq V, Serruys PW, et al. Lancet 2013;381(9867):639-50

Coronary artery disease


Long-term forecasting and comparison of mortality in the Evaluation of the Xience Everolimus Eluting Stent vs. Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization (EXCEL) trial: prospective validation of the SYNTAX Score II

Carlos M. Campos^{1,2†}, David van Klaveren^{1†}, Vasim Farooq³, Charles A. Simonton⁴, Arie-Pieter Kappetein¹, Joseph F. Sabik III⁵, Ewout W. Steyerberg¹, Gregg W. Stone^{6,7}, and Patrick W. Serruys^{1,8*}, On Behalf of the EXCEL Trial Investigators Prognosis after revascularization for UPLM: Mortality of patients with UPLM treated with DES vs. CABG in RCT with predicted mortality based on the SYNTAX Score II from the ongoing EXCEL randomized trial

Byrne RA, Kastrati A. Eur Heart J. 2015 Mar 16 [Epub ahead of print]

The impact of Downstream Coronary Stenosis on FFR Assessment of Intermediate Left Main Coronary Artery Disease: Human Validation

Downstream epicardial disease **does affect** FFR value *but* the effect on FFR is small and clinically irrelevant, unless the downstream disease is severe.

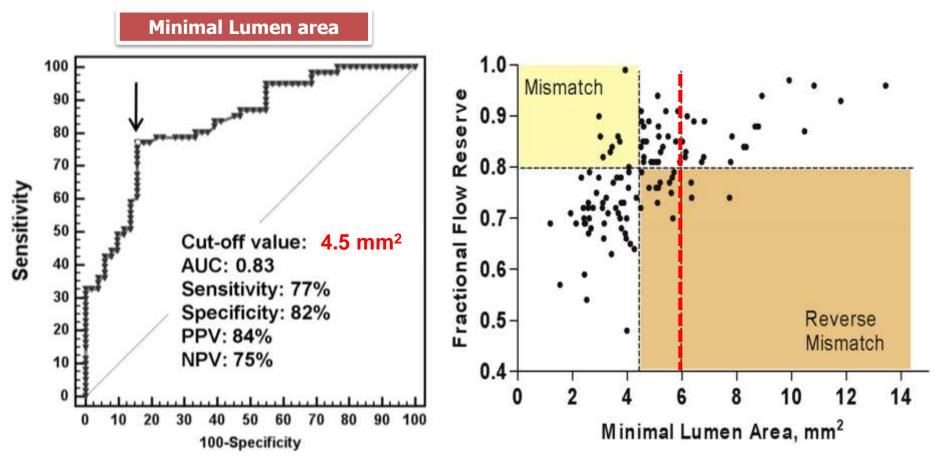
Fearon F, et al. J Am Coll Cardiol Intv 2015;8:398–403

Scope of the talk

- Patients selection:
 - PCI vs. CABG, risk score

- MSCT, IVUS for evaluation severity of Left main disease, FFR-CT

- Long term follow up in clinical trial
- Technical perspective
- Antiplatelet management (old vs. new potent P2Y12)


Summary of Studies Using IVUS to Determine the significance of ULMCA Disease

First Author	N	FU (Months)	Outcome	IVUS Criterion for Significance	Comment
Abizaid et al	122	12	MACE	MLD	No specific cutoff suggested. LMCA MLD >3 mm portends incremental risk, also determined by comorbidities and coronary artery disease in other territories
Ricciardi et al.	107	29	MACE	MLA	No specific cutoff suggested. MLA was a predictor of cardiac events
Legutko et al.	44	44	Ischemia	MLD, MLA	MLA <8 mm ² and MLD <2.8 mm correlated with FFR <0.75 and ischemia on 99Tc-Mibi-Spect
Jasti et al.	51	11	Ischemia	MLD, MLA	MLA <5.9 mm ² and MLD <2.8 mm. FFR of <0.75 used as gold- standard reference
Fassa et al.	214	40	MACE	MLA	MLA <7.5 mm²
de la Torre Hernandez et al.	354	24	MACE	MLA	MLA <6 mm²
Kang et al.	55	NA	Functional	FFR	IVUS-derived MLA of <4.8 mm² correlated with FFR <0.80

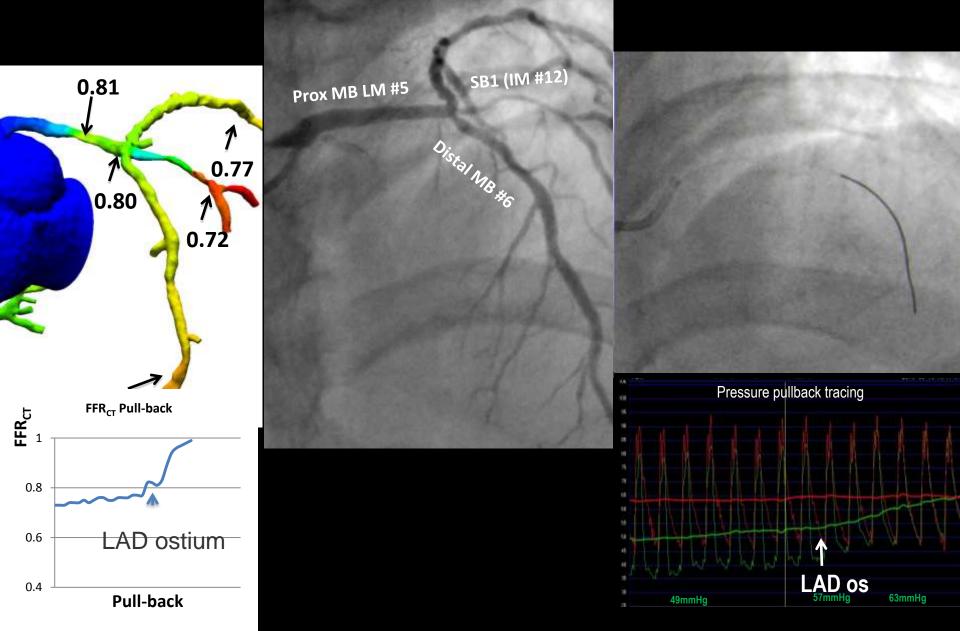
Puri R, et al. J Am Coll Cardiol Intv. 2012;5(7):697-707

IVUS-Derived MLA Criteria for Functionally Significant Left Main Coronary Artery Stenosis

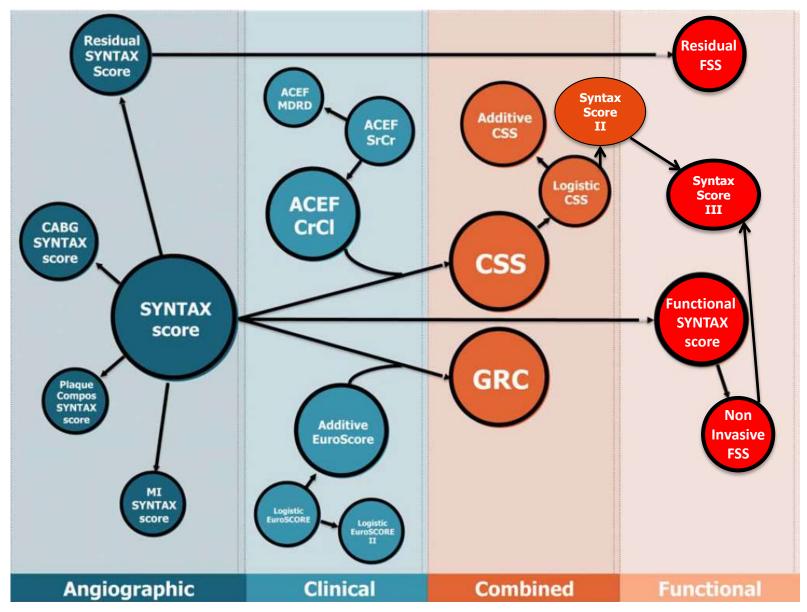
112 patients with isolated ostial and shaft intermediate LMCA stenosis (angiographic diameter stenosis of 30% to 80%) who underwent IVUS and FFR measurement.

Park SJ et al, JACC Cardiovasc Interv. 2014;7:868-74

Which lesion is causing myocardial ischemia?


Angiography

KOR 63



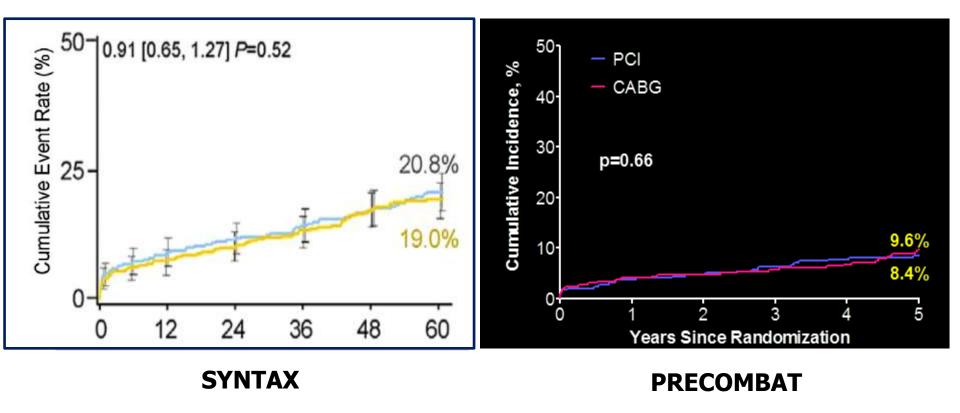
KOR 63

Which lesion is causing myocardial ischemia?

The Syntax Family... But missing the personalized and comparative approach

Cappodano D. Eur Heart J. 2012 Dec;33(24):3008-10

Scope of talk


- Patients selection:
 - PCI vs. CABG, risk score
 - MSCT, IVUS for evaluation severity of Left main disease, FFR-CT
- Long term follow up in clinical trial
- Technical perspective
- Antiplatelet management (old vs. new potent P2Y12)

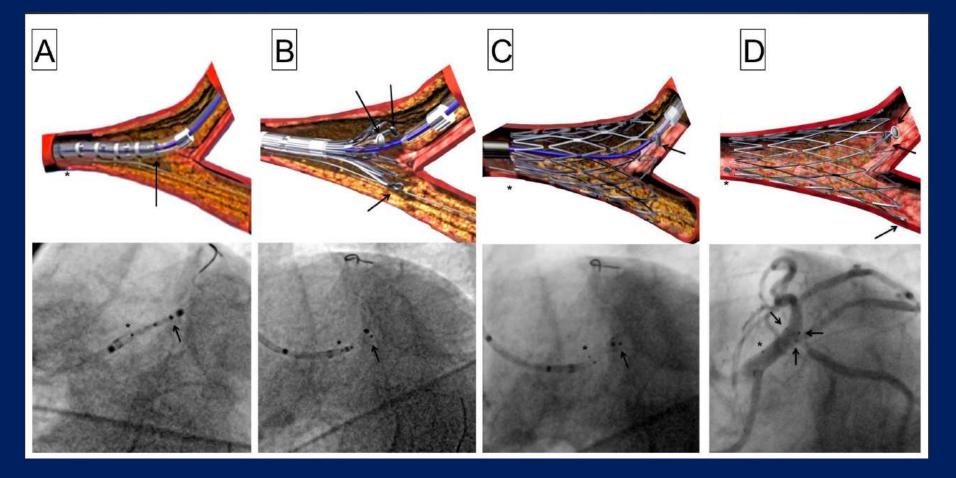
5-Year outcome of trial of Stents vs. Bypass Surgery for left main coronary Artery Disease

Event a	at 5 Year	MACCE (%)	All-cause death (%)	MI (%)	Stroke (%)	ID-TVR (%)
Milan	PCI =107	NA	18.3	0.9	0.9	18.7
	CABG =142	NA	15.9		4.2	8.4
	HR	NA	NA	NA	NA	NA
SYNTAX	PCI=357	36.9	12.8	8.2	1.5	26.7
	CABG=348	31.0	14.6	4.8	4.3	15.5
	HR	1.23	0.88	1.67	0.33	1.82
Pre	PCI=300	17.5	5.7	2.0	0.7	13.0
combat	CABG=300	14.3	7.9	1.7	0.7	7.3
	HR	1.27	0.73	0.76	0.99	1.86

Five-year outcomes in patients with left main disease treated with either PCI or CABG in SYNTAX trial vs. PRECOMBAT trial

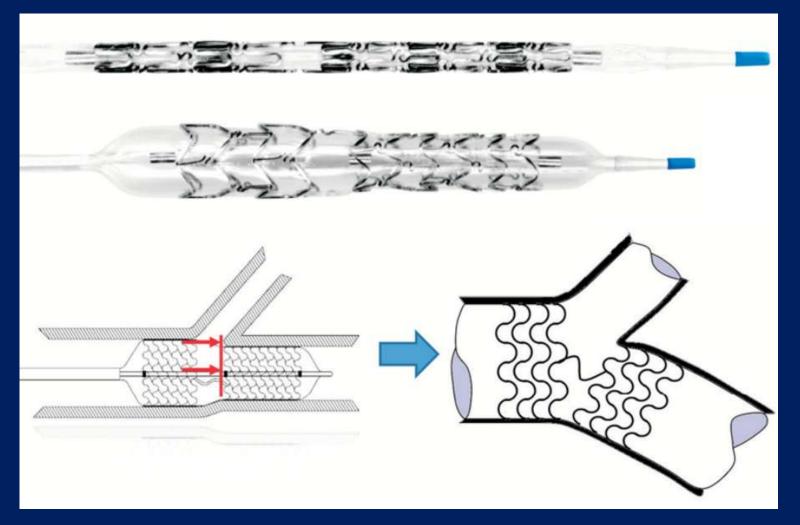
Death/MI/Stroke

Morice MC, et al. Circulation. 2014;129:2388-2394.

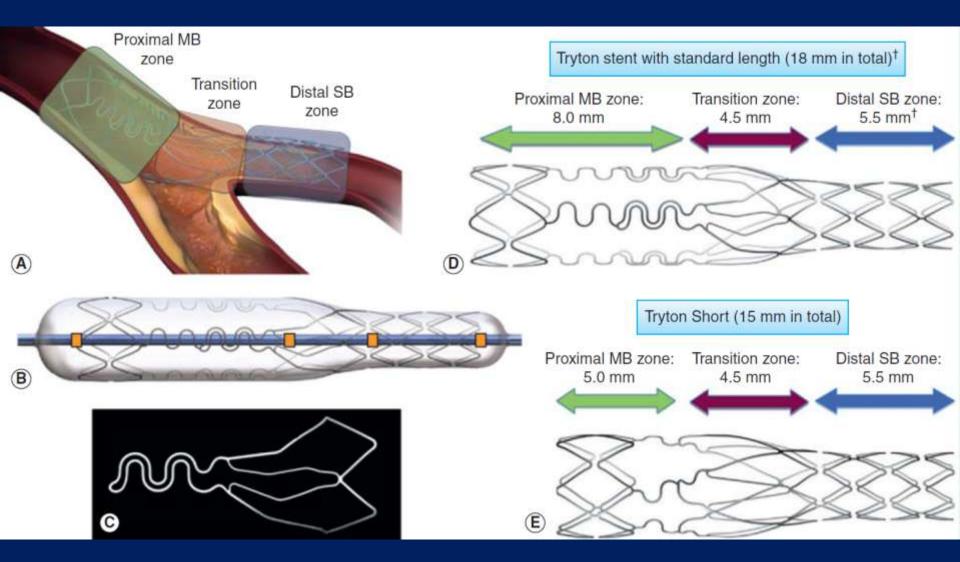

Ahn JM, et al. J Am Coll Cardiol. 2015 Mar 10 [Epub ahead of print]

Scope of talk

- Patients selection:
 - PCI vs. CABG, risk score
 - MSCT, IVUS for evaluation severity of Left main disease, FFR-CT
- Long term follow up in clinical trial
- Technical perspective
- Antiplatelet management (old vs. new potent P2Y12)


AXXESS PLUS Stent

Self expanding and conical-shaped nickel-titanium stent coated with bioabsorbable polymer releasing Biolimus A9


Garcia E, et al. J invasive Cardiol 2014;26:E45-7

The Bifurcation Optimisation Stent System (BiOSS[®])

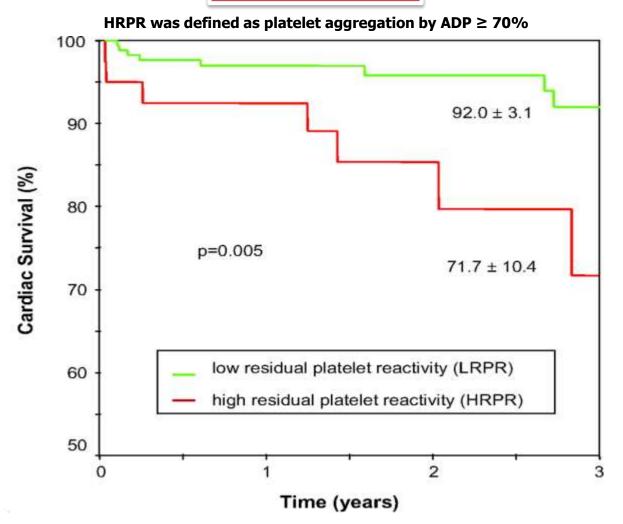
Gil et al. Eurointervention 2012;8:316-324

Tryton Side Branch Stent

Grundeken M, et al. Expert Rev. Med. Devices 2013;10:707-716

Dedicated bifurcation stent study in LM intervention

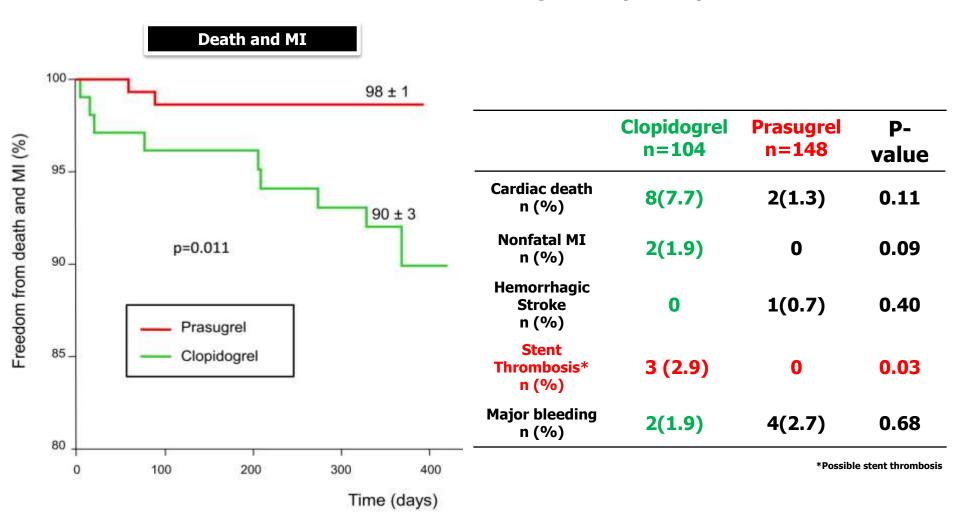
	AXXESS PLUS ¹ N = 31	BiOSS Expert ² N= 54	Tryton ³ N=52
Device description	BES, self expanding nitinol stent	PES, Balloon expandable 316L stainless steel	BMS, Balloon expandable Cobalt-Chromium
Patient setting	Stable CAD	NSTE-ACS or stable	All comers
Endpoint	Safety and efficacy endpoint	Cumulative rate of death, MI, TLR	Acute gain in 3 segment Major adverse cardiac events
Follow-up	12 month	12 month	6 month
SYNTAX score	NA	21.5±6.5	20±8
Medina class 1,1,1 (%)	41%	39%	63%
Main vessel diameter (mm)	3.91±0.34	4.15±0.32	3.4±0.4
MV diameter stenosis (%)	61.2±20.2	56±26	51±17
Final kissing, (%)	NA	66.7%	94%
Adverse events, (%)	MACE 19.4 % ISA 23.8% postprocedure but no late acquired ISA	Cumulative rate 9.3%	MACE 22%
Stent thrombosis, (%)	0	0	0
TLR/TVR, (%)	TLR 9.1%	TLR 9.3%	TVR 12%
Myocardial infarction,(%)	9.7%	0	10%
Death, (%)	0	0	0


1. Hosegawa T, et al. Catheter Cardiovasc Interv 2009;73:34-41 2. Bil J, et al. J Interv cardiol 2014;27:242-51 3. Magro M, et al. Eurointervention 2013;8:1259-69

Scope of talk

- Patients selection:
 - PCI vs. CABG, risk score
 - MSCT, IVUS for evaluation severity of Left main disease, FFR-CT
- Long term follow up in clinical trial
- Technical perspective
- Antiplatelet management (old vs. new potent P2Y12)

High residual platelet reactivity after clopidogrel loading and long-term clinical outcome after drug-eluting stenting for unprotected left main coronary disease. (n = 215)


Cardiac survival

Migliorini A et al. Circulation. 2009;120:2214-2221

Different antiplatelet regimens and clinical outcome

Comparison of the Degree of Platelet Aggregation Inhibition With *Prasugrel* Versus *Clopidogrel* and Clinical Outcomes in Patients With Unprotected Left Main Disease Treated With *Everolimus*-Eluting Stents (n= 252)

Migliorini A et al. Am J Cardiol. 2013;112:1843-1848

Conclusion

- Treatment option for UPLM should be based on Heart team approach
- LMCA stenosis is usually associated with downstream epicardial vessels, thus it is mandatory to carefully review other coronary segments.
- Incidence of stent thrombosis is low and literature does not always report specificaly LM stent thrombosis but report stent thrombosis in stented LM patients.
- Low EF, Euroscore, high residual platelet reactivity and the use of two stents are the most frequently recognized determinant of LM stent thrombosis.
- Acute and subacute stent thrombosis are more dangerous than late and very late stent thrombosis.
- New potent antiplatelet might decrease risk of stent thrombosis

Now two Interventional Journals

www.eurointervention.org	Volume 10 - Number 12 - April 2015 - ISSN: 1774-024X
EuroInte Official Journal of EuroPCR and the E of Percutaneous Cardiovascular Inter	
Bioabsorbable polymer-coated sirolimus- eluting stent: randomised DESSOLVE II trial	
First-in-man assessment of novel closure device for large puncture accesses	
Evaluation of second-generation Absorb BVS: 12-month outcomes of the ABSORB EXTEND study	
IVUS vs. anglegraphy guidance for CTOs: two-year results from randomised AIR-CTO study	
Improved endothelial function after TAVI	
Impact of systemic inflammatory response syndrome in TAVI	
Thoracoscopically assisted ventricular reconstruction for ischaemic heart failure with left anteroapical aneurysm	Plate ENTIDE-IN-CHIEF Plate IV Serroya chief Chief Plate IV Serroya chief Plate IV Serroya chief Plate IV Serroya

SUPPLEMENTS EDITORS Jean Fajadet Alec Vahanian

www.asiaintervention.org

Volume 1 - Number 1 - January 2015

Asia Intervention

ZES for multivessel and long lesions: RESOLUTE **ASIA Registry**

Thrombus aspiration for STEMI: Japanese PCI Registry

Second generation EES and vascular function

Site-specific neoatherosclerosis assessed by optical coherence tomography

Stent malapposition and contrast staining

How should I treat LAD disease progression?

CHIEF EDITORS Runlin Gao Upendra Kaul Takashi Kimura Seung-Jung Park

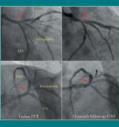
SENIOR CONSULTING EDITOR Patrick W. Serruys Richard Mg

CONSULTING EBITORS Christoph Naber

AsiaIntervention - 1st issue January 2015

Prof. Gao

Prof.Kaul



Prof. Park

Prof. Kimura

CHIEF EDITORS Runlin Gao Upendra Kaul Takashi Kimura Seung-Jung Park

SENIOR CONSULTING EDITOR Patrick W. Serruys CONSULTING EDITORS Christoph Naber Richard Ng