Integrated Approach for LM PCI Using FFR and IVUS

Seung-Jung Park, MD, PhD

Heart Institute, University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Q1, Why FFR ?

Significant Stenosis Negative FFR

47/M Stable Angina

Ins*ignific EathStienes* is P*olisime t*EFR

62/F Stable Angina

Many Mismatch Intermediate LM Disease, Os/Shaft

Park SJ et al. JACC Interv, 2014;7(8):868-874

Predictors for FFR <0.80 Multivariable Analysis, LM (n=112)

Variables	OR	95%CI	p-value
Model 1			
MLA, mm ²	0.37	0.25-0.56	<0.001
Plaque rupture	4.51	1.36-14.9	0.014
Age, year	0.95	0.90-1.00	0.033
BMI, kg/m²	1.19	1.00-1.40	0.05
Model 2			
MLA, mm ²	0.34	0.21-0.54	<0.001
Age, year	0.94	0.90-0.99	0.022
LV mass, g	1.01	1.00-1.03	0.03

Model 1 included clinical, QCA, and IVUS variables Model 2 included Model 1 plus LV mass assessed by **Echocardiography**

How I Implement FFR in Real Practice ?

For the Undetermined, Intermediate Ostial and Shaft LM Lesion,

For Intermediate **Bifurcation** LM Lesion,

If Transducer Placed Beyond Bifurcation in both LAD and LCX,

Single Unit of Disease

Composite FFR still Works.

LM Bifurcation Disease Medina (1,0,0)

55/M, Stable angina, TMT (+), Thallium scan (-)

FFR in Both LAD and LCX,

11.40

and and had been been been and

IVUS in Both LAD and LCX,

Distal LM, RVD 6.2mm

MLA 3.0mm²

LCX

RVD 5.3mm

Disease Free, LCX

Single Stent Cross-Over I

Promus Element 4.0x20

Additional high pressure Inflation with 4.0 mm non-compliant balloon

COLLEGE MEDICINE

After Stent Crossover, LCX Ostium Was Jailed !

What Would You Do?

Do You Want to Treat Jailed Side Branch? Consider FFR, First !

Just Defer !

Functionally Significant LCX Jailing After Stent Crossover (LCX ostial DS<50%)

Kang SJ, Catheterization and Cardiovascular Interventions. 2014;83(4):545-52.

Mechanism of LCX Jailing

Mainly, Carina Shift

After Cross-Over

After Cross-Over

LC>

Plaque Redistribution

CardioVascular Research Foundation

Before Cross-Over

Kang et al. Circ Cardiovasc Interv 2011;4:355-61

9.6 mm, 1 mm/di∨

LAD

Morphology Cannot Predict LCX FFRFFR 0.91FFR 0.81FFR 0.85

Left Main-TLR at 2 Years

AMC New Data, 2015

Death or MI at 2 Years

Defer Is Safe and Good !

AMC New Data, 2015

Q1, Why FFR ?

- Angiographic Assessment is Not Always Enough ! Decision Making To Treat or Not To Treat for Intermediate LM Stenosis, FFR is Crucial !
- Decision Making To Treat or Not To Treat for Side Brach Jailing after Main Stent Crossover, *FFR Should Be Considered First* ! Routine Kissing Balloon Inflation is Not Always Good.

Q2, Why IVUS too ?

IVUS Guidance Saved Lives !

Park SJ et al, Circulation. Cardiovasc Interv. 2009;2(3):167-77.

Impact Of IVUS

① Decision Making ; 1 Stent or 2 Stents ?

Stent Strategy for Distal LM Bifurcation

Stent Cross Over	Normal Ostial LCX (Medina 1.1.0., 1.0.0) Normal or Diminutive LCX Small LCX with < 2.5 mm in diameter Focal disease in distal LCX
Two Stent	Diseased LCX (Medina 1.1.1., 1.0.1) Large LCX with \geq 2.5 mm in diameter Diseased left dominant coronary system Concomitant diffuse disease in distal LCX

Park SJ, Kim YH. Colombo A, Issam D. Moussa et al. Textbook of Bifurcation Stenting 2007

Restenosis at 2 year Pooled Analysis in 403 Patients with LM PCI Using SES

Kang et al. Circ Cardiovasc Interv 2011;4:1168-74

Depending on Whether or LCX Disease,

Impact Of IVUS

② Stent Optimization ; After 2 DES Stents

2 Stent Techniques

- T-stent, modified T-stent or TAP
- Mini-crush (or step crush)
- Culotte
- V-stent
- Y-stent (SKS-simultaneous kissing stents)

2 Stents Technique, *Effective IVUS Stent Area* (Rule of 5,6,7,8) Can Reduce Restenosis Rate

Overall Restenosis Rate < 5%, TLR < 2%

CardioVascular Research Foundation

Kang et al. Circ Cardiovasc Interv 2011;4:1168-74

Issue of LM /VUS MLA (Ischemic Threshold)

LM, IVUS MLA < 6.0 mm² Matched with FFR <0.75

Jasti V et al. Circulation 2004;110:2831-6

Non-LM, IVUS MLA Matched with FFR

	Ν	FFR	RLA	MLA mm²	AUC	Sens	Spec	PPV	NPV	Accu
Abizaid (1998, AJC)	112	CFR	8.3	4.0						
Nishioka (1999, JACC)	70	SPECT	10.6	4.0						
Briguori (2001, AJC)	53	0.75	7.8	4.0	-	92%	56%	38%	96%	64%
Waksman (2013, JACC)	350	0.80	8.6	3.07	0.65	64%	65%	_	-	65%
Kang (2012, AJC)	784	0.80	8.2	2.4	0.77	84%	63%	48%	90%	69%
Kang (2011, Circ int)	236	0.80	7.6	2.4	0.80	90%	60%	37%	96%	68%
Koo (2011, JACC int)	267	0.80	6.8	2.75	0.81	69%	65%	27%	81%	67%
Lee (2010, AJC)	94	0.75	5.9	2.0	0.80	82%	81%	_	_	81%
Gonzalo (2012, JACC)	47	0.80	7.1	2.36	0.63	67%	65%	67%	65%	66%
Stone (2012, VERDICT – FIRST)	554	0.80		2.9				47%	81%	66

Background Geometric Abstraction By Murray's Law

4 0 mm ²	Finet's	Murray's			
6.0 mm^2	LM	LM	LCX	LAD	
LM LAD	7.35	6.35	4.0	4.0	Old
	7.26	6.27	3.9	4.0	
	7.17	6.19	3.8	4.0	Jata
3.6 mm²	7.08	6.11	3.7	4.0	
	6.98	6.04	3.6	4.0	
	6.89	5.96	3.5	4.0	
3.0 mm ²	Finet's	Murray's			
4.5 mm ²	Finet's LM	Murray's LM	LCX	LAD	New
3.0 mm²	Finet's LM 5.52	Murray's LM 4.76	LCX 3.0	LAD 3.0	New
3.0 mm² LM LAD	Finet's LM 5.52 5.42	Murray's LM 4.76 4.68	LCX 3.0 2.9	LAD 3.0 3.0	New Data
3.0 mm² LM LAD	Finet's LM 5.52 5.42 5.33	Murray's LM 4.76 4.68 4.60	LCX 3.0 2.9 2.8	LAD 3.0 3.0 3.0	New Data
4.5 mm² LM LAD 2.7 mm²	Finet's LM 5.52 5.42 5.33 5.24	Murray's LM 4.76 4.68 4.60 4.53	LCX 3.0 2.9 2.8 2.7	LAD 3.0 3.0 3.0 3.0 3.0	New Data
4.5 mm² LM LAD 2.7 mm²	Finet's LM 5.52 5.42 5.33 5.24 5.14	Murray's LM 4.76 4.68 4.60 4.53 4.45	LCX 3.0 2.9 2.8 2.7 2.6	LAD 3.0 3.0 3.0 3.0 3.0 3.0	New Data
4.5 mm ² LM LAD 2.7 mm ² CX	Finet's LM 5.52 5.42 5.33 5.24 5.14 5.05	Murray'sLM4.764.684.604.534.454.37	LCX 3.0 2.9 2.8 2.7 2.6 2.5	LAD 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	New Data

New IVUS MLA Matched with FFR <0.80 Ostial and Shaft LM Disease (N=112)

Park SJ et al. JACC Interv, 2014;7(8):868-874

Q2, Why IVUS Too ?

1. IVUS Guidance Saves Lives.

- 2. Assessment of LM Ostium, Reference Vessel Diameter, Pattern of Remodeling, and Vulnerability of Plaque.
- Treatment Strategy Would be Simplified as Single Stent Cross-Over Depending on the Disease Status of LCX Ostium by Separate IVUS Run.
- IVUS Guided Stent Optimization and Effective Stent CSA (Rule of 5,6,7,8 mm²) Can Make a Good Clinical Outcomes.
- Smaller IVUS MLA 4.5 mm² Can Predict Functional Significance of LM Stenosis.

Integrated Use of FFR and IVUS

Less DES, Less Surgery, Simplified Procedure, and Improved Clinical Outcomes !

