Left Main & Bifurcation PCI I Left Main PCI

Assessing Left Main Bifurcation: What to Know before PCI

Yoshinobu Murasato, MD, PhD Department of Cardiology, Kyushu Medical Center, Fukuoka, Japan

TCTAP 2015, April 28 – May 1, Seoul

Conflict of Interest

• I, Yoshinobu Murasato, do not have any conflict of interest.

Anatomical parameter in LMCA

Positive correlation between length and angle (r=0.32)

Reig J et al. Clin Anat 2004

Types of Involvement of Coronary Bifurcations by Atherosclerosis

- Atherosclerosis occur predominantly close to bifurcation.
- Carinal involvement by atherosclerosis is extremely unusual.

Renu Virmani

Types of plaque in LMCA in sudden cardiac death cases with stenosis ≥50%

171cases

Vascular Branching Laws

Bifurcation diameter models	Relationship	Physical mechanisms Minimum Energy	
нк	$D_{m}^{\frac{7}{3}} = D_{1}^{\frac{7}{3}} + D_{s}^{\frac{7}{3}}$		
Finet	$D_{m} = 0.678 \times (D_{1} + D_{s})$	"Fractal"-type relation	
Murray	$D_{m}^{3} = D_{1}^{3} + D_{s}^{3}$	Minimum Energy & WSS ~ Constant	
Mitsudo	$D_{m}^{2} = D_{1}^{2} + D_{s}^{2}$	Velocity ~ Constant	
where D _m , D _i , and D daughter vessels, res	are the diameters of mot spectively.	her, larger and smaller	

Area-preservation and Finet models area empirical and do not have a physical basis.

Effect of 3-D structure of LMCA on kissing balloon

Murasato Y, Colombo A, Moussa I "Tips and Tricks in Interventional Therapy of Coronary Bifurcation Lesions"

Two overlapping styles in KBT

Minimal overlapping + Proximal optimization

- ML Vision 3.5/28, 14atm
- SB Ryujin 3.0/20, 12atm
- KBT (6atm)
 MV Ryujin 3.5/20
 SB Ryujin 3.0/20
- prox MV
 Quntum Maverick II
 4.5/8, 12atm

Long overlapping

- ML Vision 3.5/28, 14atm
- SB Ryujin 3.0/20, 12atm
- KBT (6atm)
 MV Ryujin 3.5/20
 SB Ryujin 3.0/20

Mitsudo's law $3.5^2 + 3.0^2 = 4.6^2$

Murasato Y et al. EuroInterv. 2014;10:934-41

Suboptimal KBT has a potential of changing LMCA geometry.

Minimal overlapping + POT

Long overlapping

Murasato Y et al. EuroInterv. 2014;10:934-41

Complete revascularization should be performed according to vascular branching law.

Effect of bifurcation angle on stent expansion

Murasato Y, Colombo A, Moussa I, Tips and Tricks in Interventional Therapy of Coronary Bifurcation Lesions

Stent deformation in the SBOS in the steep-angled bifurcation

Coronary flow after bifurcation stenting

MV stenting followed by KBT

Mini-Crush stenting

Iwasaki K (Waseda Univ) & Murasato Y

Comparison of Flow Velocity Distributions at Carina

0.14

0.13

0.12

0.10

0.09

0.08

0.06

0.05

0.04

0.03

0.01

Normal Bifurcation

Mini-Crush Stenting

	-
ocity m/s	10
0.08	
0.07	
0.06	
0.05	
0.05	
0.04	
0.03	
0.03	
0.02	
0.01	1
0.01	15

Stenotic Bifurcation

Modified-T Stenting

Velocity m/s 0.20 0.18 0.16 0.15 0.13 0.11 0.09 0.07 0.05 0.04 0.02

Iwasaki K, TCTAP2012

IVUS: Plaque distribution in LMCA bifurcation

Atherosclerotic plaque was predominantly located in the LMCA lateral wall in the LAD side, which was likely to extend to the LAD ostium.

Oviedo C. Circ Cardiovasc Interv. 2010; 3:105-12.

LMCA: more frequent reverse mismatch between FFR and QCA

Non-LMCA

LMCA

Park SJ. J Am Coll Cardiol Intv 2012;5:1029 –36

Cut-off value of MLA for the LMCA intervention

	Kang et al. (55pts)	Jasti et al. (55pts)	LITRO study (354pts)	Fassa et al. (214pts)
MLA, mm2	4.9	7.6	7.2	9.4
PB, %	69	59	59	53
EEM area, mm2	17.8	18.7	18.8	20.5
Method	FFR IV adenosine	FFR IC adenosine 42 - 56 μg	Clinical validation	From "Normal" population- Clinical validation
Cut-off MLA	4.8	5.9	6	7.5

Correlation between FFR and MLA

Kang SJ et al. J Am Coll Cardiol Intv 2011; 4: 1168-1174

Integrated use of FFR and IVUS

Intermediate LMCA stenosis (DS* 30-70%)

Park S et al. J Am Heart Assoc 2012;1:e004556

Ostial or Shaft Stenosis

Whether to Treat or Not: FFR guidance

Indication

- FFR-guide
- IVUS assistance

Treatment

IVUS-guidance

- Pre-intervention IVUS optimization

MSA: >8.2mm² is important

Bifurcation Stenosis

- · Whether to Treat or Not: FFR guidance
 - FFR measurement is important Consider a bifurcation stenosis as a single unit of disease (see Figure 2.)
 - IVUS can assist the functional evaluation of bifurcation stenosis

MLA^{1>}4.8mm² (sensitivity 89%, specificity 83%) and plaque burden>72% (sensitivity 73%, specificity 79%) to predict FFR≤0.80 (see Figure 3.)

How to Treat: IVUS guidance

- Pre-intervention IVUS evaluation Evaluate anatomic features favoring single stent cross over stenting (see Table 4.)
- Post-intervention IVUS optimization

Evaluate MSA in every segment of LMCA (see Figure 5.)

* Visual estimated diameter stenosis; † Minimal lumen area; ‡Minimal stent area

Conclusion

- Atherosclerosis occurs predominantly in the lateral area of the bifurcation with low shear stress.
- Vascular reconstruction should be performed in accordance with vascular branching law.
- SB stenting and KBT have some limitations in complete apposition and rheological aspect.
- Pre-PCI assessment using imaging devices is useful for the optimal PCI.
- FFR measurement is also useful for detection of myocardial ischemia.
- Integrated use of FFR and IVUS is complementary for the ideal LMCA bifurcation PCI.