

April 28-May1, 2015 Seoul. Korea

Management of Left Main Restenosis

I Sheiban

University of Turin

Director Interventional Cardiology Pederzoli Hospital Pechiera del Garda (Verona) / Italy

E-mail : profsheiban@gmail.com

The longlasting challenge in PCI : In-Stent-Restenosis

- BMS: -20-30% (up to 40% in high- risk subsets)
- DES: -pivotal trials: < 6%</p>
- Real world trials: 10-15%
- > BVS : (6-10%) ?

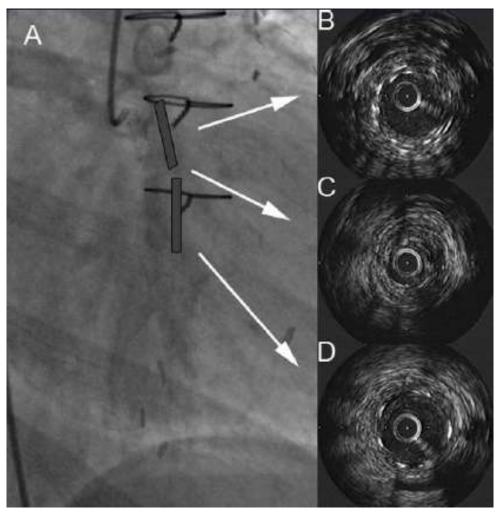
Clinical Presentation

DES & BMS:

- ✓ up to 60% presenting with ACS
- ✓ up to 20% presenting with acute MI
- ✓ 50% in need for TVR

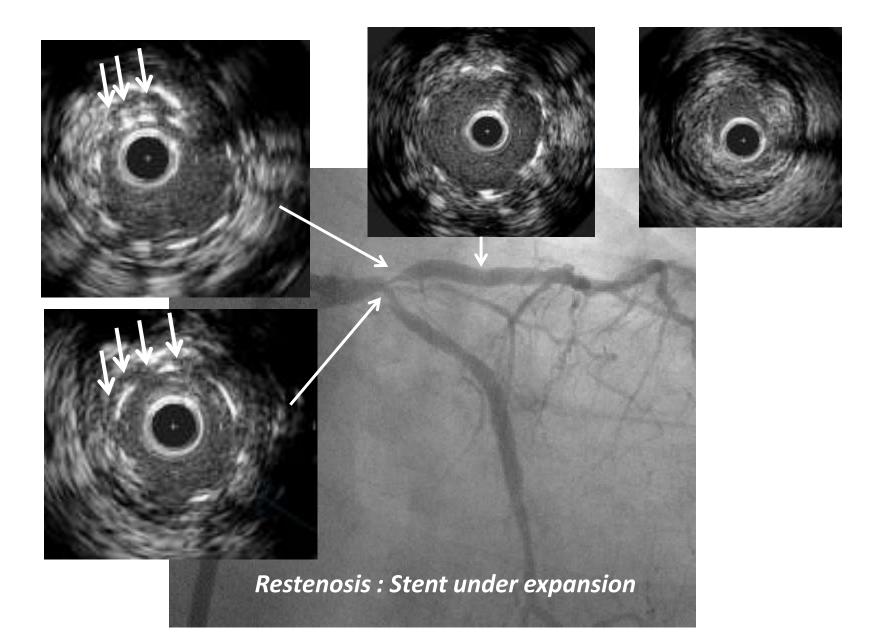
In-Stent-Restenosis .*Predictors & Mechanisms*

Patient factors	Vessel factors	Procedure factors
Female gender	Chronic occlusion	Smaller poststent MLD
Diabetes mellitus	In-stent restenosis	Stent under expansion
Chronic renal failure on hemodialysis	Bifurcation lesion	Over dilation of an undersized stent
Prior MI	Lesion location = LAD	Stent fracture
Prior PCI	Small vessel (diameter < 2.75 mm)	Nonuniform stent expansion (i.e., nonuniform drug depostio
Drug resistance or hypersensitivity	Long lesion (length > 20 mm)	
	Severe calcification or tortuosity	
	Ostial location	
	Type Clesion	


MI, myocardial infarction; PCI, percutaneous coronary intervention.

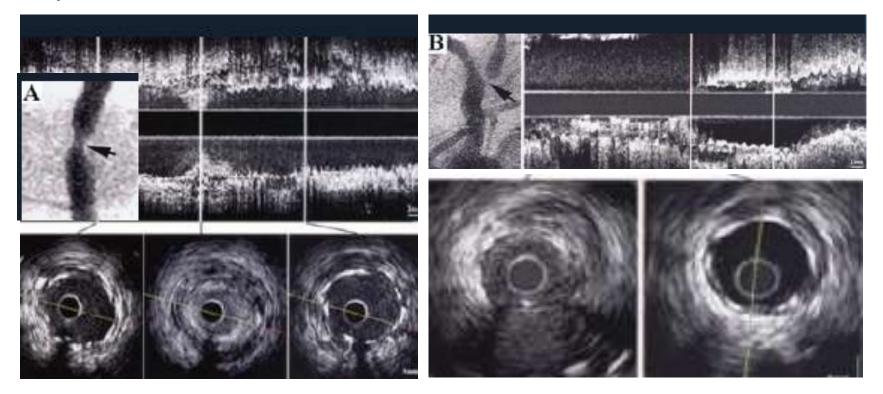
Similar in BMS & DES..

Kim MS. et al, Cardiovasc Ther 2011;29:190-8


In-Stent-Restenosis : *Stent Fracture*

Incidence: 1% to 8%
Need for TLR: 15% to 60%

Dangas GD. et al, JACC 2010;56:1897-907



Technical factors

Gap between two stents

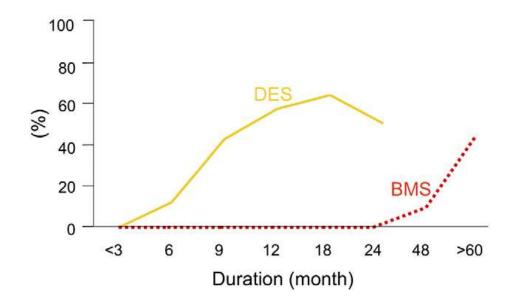
Incomplete stent coverage

Stent edge restenosis: local trauma outside the stent. In-stent restenosis : a localized lesion, associated with a discontinuity in stent coverage

Lemos A. et al. Circulation 2003; 108: 257-60

CARDIOVASCULAR SUMMIT

Management of Left Main Restenosis

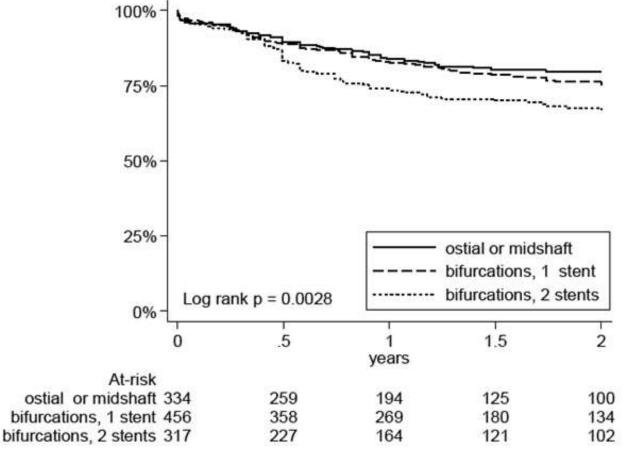

Journal of the American College of Cardiology © 2012 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 59, No. 23, 2012 ISSN 0735-1097/636.00 doi:10.1016/j.jacz.2011.10.909

STATE-OF-THE-ART PAPER

In-Stent Neoatherosclerosis

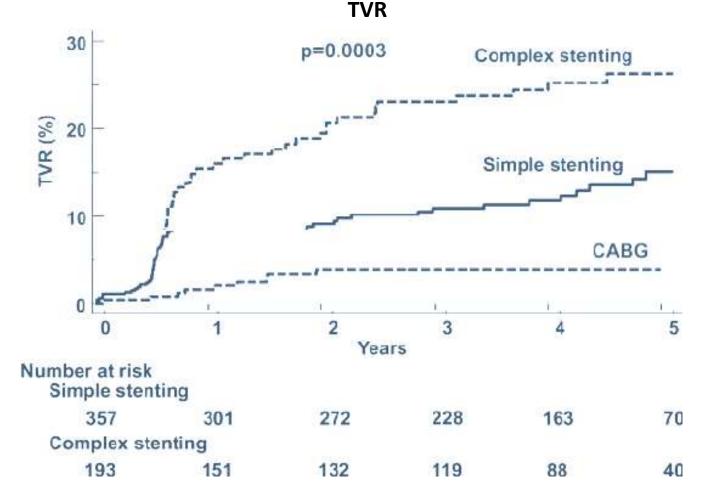
A Final Common Pathway of Late Stent Failure

Seung-Jung Park, MD, PHD,* Soo-Jin Kang, MD, PHD,* Renu Virmani, MD,† Masataka Nakano, MD,† Yasunori Ueda, MD‡ Seoul, South Korea; Gaithersburg, Maryland; and Osaka, Japan



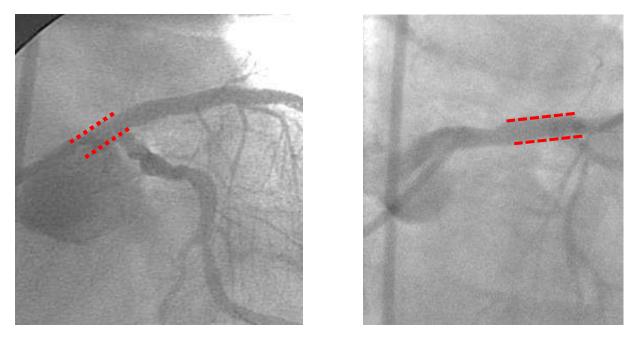
Conclusions

Emerging evidence suggests in-stent neoatherosclerosis as an important substrate for both ISR and LST, especially in the extended phase. In light of the rapid progression in DES, early detection of neoatherosclerosis may be beneficial to improving long-term outcome of patients with DES implants. Although angioscopy and multimodal images have consistently supported de novo atherosclerotic changes of neointima for both BMS and DES, the methodologies should be more validated to clarify the clinical implications.



Palmerini et al Eur Heart J 2009

Procedural Factors: Complex approach vs Simple approach



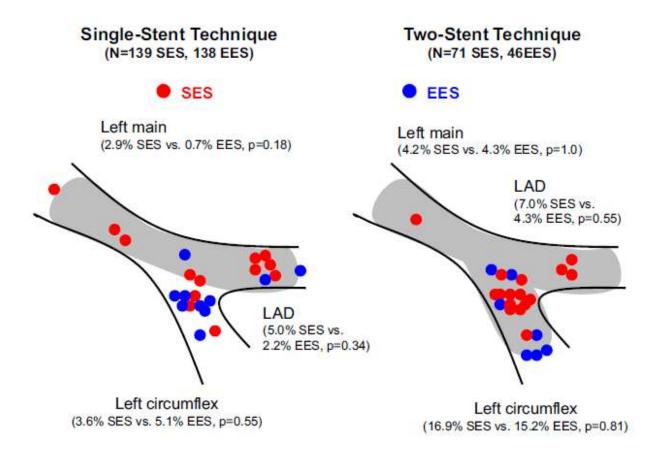
Chang et al. Heart 2011

Procedural Factors :

From MITO Registry (Milan and New-TOkyo) Full cover approach (Ostial LM cover) FCA strategy: 252 patients vs No FCA strategy: 127patients

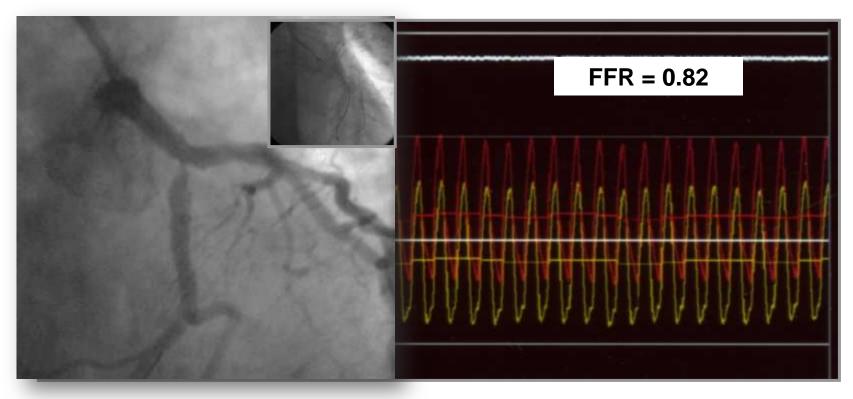
Overall MB-ISR 4.8% in FCA vs. 12.6% in no FCA

MB ostial ISR 0.4% in FCA vs. 6.4% in no FCA


Nakamura et al . *EuroPCR. 2012*

Left Main ISR Distribution

PRECOMBACT 2


Angiographic Restenosis in the Subgroups Stratified By Stenting Technique

KIM YH et al ; J A C C CardioVac Interv 2012: 708-717

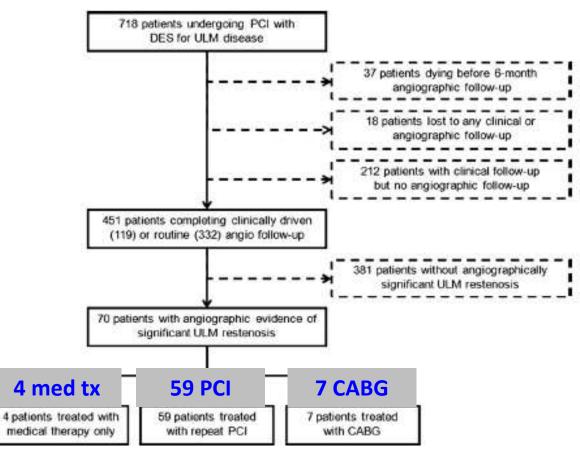
Ostial LCX compromised ?

Angio vs FFR (FFR <0.75 = ischemia) : to treat or not treatFFR reflects both degree of stenosis and myocardial territory

Bon-Kwon Koo, MD

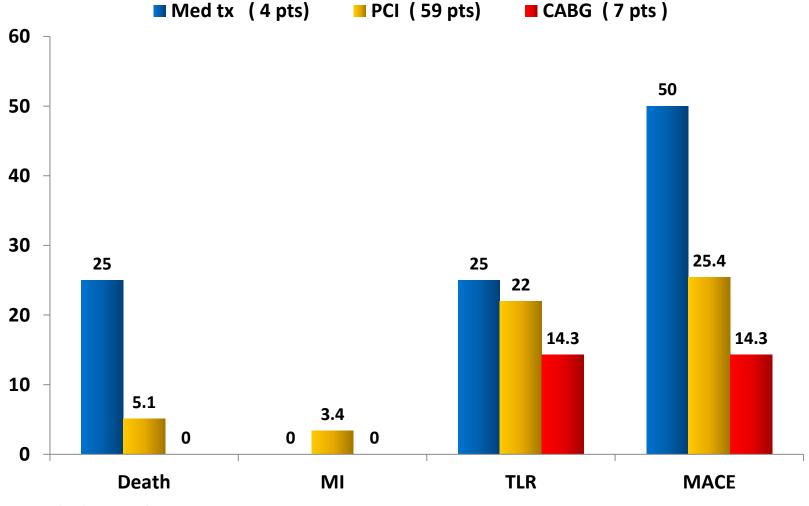
In-Stent-Restenosis *Treatment Options*

- POBA
- Cutting Balloon
- Scoring Balloon
- Laser, Rotablation
- DEB
- DES (same vs. different)
- > VBT
- CABG


CARDIOVASCULAR SUMMIT

Management of Left Main Restenosis

FAILS (Failure in Left Main Study)


Imad Sheiban, MD,* Dario Sillano, MD,* Giuseppe Biondi-Zoccai, MD,* Alaide Chieffo, MD,+

Sheiban et al , JACC , 2009

DES In-Stent Restenosis in Left Main (n = 70) *FU*: 25,6 ± 16,3 months

Sheiban et al , JACC , 2009

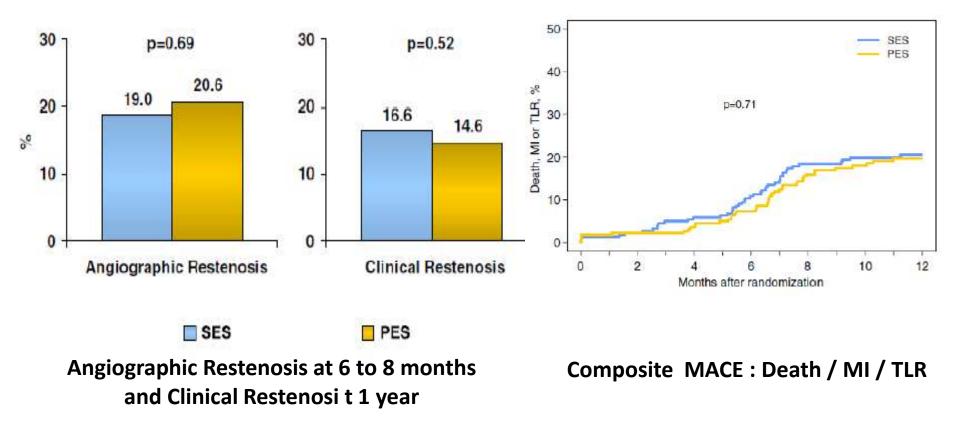
CARDIOVASCULAR SUMMIT

TCTAP 2015

DES vs. POBA: RIBS II: 150 patients with BMS-restenosis: SES vs. POBA

Event	SES Group $(n = 76)$	BA Group $(n = 74)$	p Value	(95% CI)
Hospital events, n (%)		5 C		
Death	1 (1.3)	0 (0)	0.49	
Myocardial infarction	0 (0)	0 (0)	1	1
Target vessel revascularization	0 (0)	0 (0)	1	1
Coronary angioplasty	0 (0)	0 (0)	1	1
Coronary surgery	0 (0)	0(0)	1	1
Any major hospital event	1 (1.3)	0(0)	0.49	
Events at 9 months, n (%)				
Death	3 (3.9)	1 (1.4)	0.32	0.34 (0.03-3.27)
Myocardial infarction	2 (2.6)	1(1.4)	0.57	0.51 (0.05-5.61)
Target vessel revascularization	3 (3.9)	10 (13.5)	0.03	3.56 (0.98-12.9)
Coronary angioplasty	2 (2.6)	7 (9.5)	0.08	3.65 (0.76-17.5)
Coronary surgery	1 (1.3)	3 (4.1)	0.54	2.06 (0.19-22.7)
Any major event at 9 months	4 (5.3)	11 (14.9)	0.05	2.93 (0.93-9.20)
Events at 1 year, n (%)				
Death	3 (3.9)	3 (4.1)	0.98	1.02 (0.21-5.05)
Myocardial infarction	2 (2.6)	2 (2.7)	0.99	1.01 (0.14-7.17)
Target vessel revascularization	8 (10.5)	22 (29.7)	0,003	3.16 (1.40-7.09)
Coronary angioplasty	7 (9.2)	18 (24.3)	0.01	2.83 (1.18-6.76)
Coronary surgery	1 (1.3)	4 (5.4)	0.16	4.12 (0.46-36.9)
Any major event at 1 year	9 (11.8)	23 (31.1)	0.004	2.90 (1.34-6.28)

Table 3. In-Hospital and One-Year Clinical Events


Patients with more than one event are counted only once for the composite clinical end points, although each event is listed separately in the corresponding category. p values from Cox analysis.

CI = confidence intervals; HR = hazard ratio; -- = undefined; other abbreviations as in Table 1.

Alfonso F. et al, JACC 2006;56:2152-60

ISAR-DESIRE: 450 patients with SES-restenosis: SES vs. PES

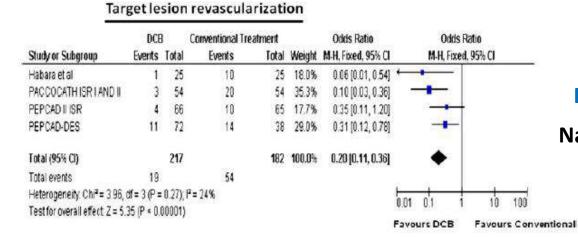
Mehilli J. et al, JACC 2010;55: 2710-6

CARDIOVASCULAR SUMMIT

Management of Left Main Restenosis

DEB vs. POBA PEPCAD-DES :110 patients with DES-restenosis: Paclitaxel-eluting balloon vs POBA (SES & PES)

Clinical	Outcome at 6 Months	Drug-Coated Bailoon	Uncoated Balloon	
		(n = 72)	(n = 38)	p Value
	Target lesion revascularization	11 (15.3%)	14 (36.8%)	0.005
	Myocardial infarction	0 (0.0%)	1 (2.6%)	0.35
	Cardiac death	1 (1.4%)	4 (10.5%)	0.048
	MACE	12 (16.7%)	19 (50.0%)	<0.001
	Stent thrombosis			
	Definite	0	0	
	Possible	1 (1.4%)	4 (10.5%)	0.048


Angiographic Outcome at 6 Months according to type of restenotic stent

	Drug-Coated Balloon	Uncoated Balloon	p Value
Non-PES	56	31	
Late lumen loss, mm	0.41 ± 0.65	0.90 ± 0.65	0.004
PES	16	7	
Late lumen loss, mm	0.46 ± 0.50	1.58 ± 1.03	0.021

Rittger H. et al, JACC 2012;

CARDIOVASCULAR SUMMIT **TCTAP** 2015

Management of Left Main Restenosis

DEB vs POBA

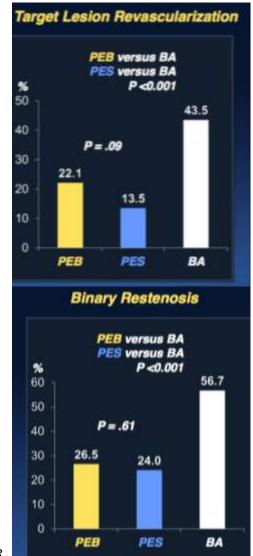
	DEB		Cont	rol	Risk Ratio		
	Total	TLR	Total	TLR		RR	95%-CI
PEPCAD-21SR 2009	66	4	65	10		0,39	[0.13; 1.19]
Habara et al 2011	25	1	25	10 -		0.10	[0.01; 0.72]
PACCOCATH ISR and 2012	54	3	54	25		0.12	[0.04; 0.37]
PEPCAD-DES 2012	72	11	38	14		0.41	[0.21; 0.82]
ISAR-DESIRE 3 2012	137	30	265	73	-	0.79	[0.55; 1.15]
Random effects model	354		447		\langle	0.34	[0.16; 0.73]
Heterogeneity: I-squared=73.9%, ta	u-squared=0.	4895, p≠	0.0041				
					0.2 0.5 1 2	5	

DEB vs DES

Indermuehle et al. Heart2013

Favors DEB Favors Control

DES restenosis: ISAR DESIRE 3


	PEB 3 (2·2%) 2 (2 1%)	PES	Balloon angioplasty	p values					
				PEB vs PES	PEB vs balloon angioplasty	PES vs balloon angioplasty			
Death	3 (2.2%)	6 (4.6%)	7 (5·3%)	0.27	0.17	0.80			
Myocardial infarction	3 (2.1%)	3 (2.4%)	2 (1.5%)	0.92	0.70	0.63			
Q wave myocardial infarction	1 (0.7%)	1 (0-8%)	0	0.95	0.34	0.32			
Target lesion thrombosis	1(0.7%)	1(0.8%)	0	0.97	0.33	0.31			
Target lesion revascularisation	30 (22.1%)	17 (13.5%)	56 (43·5%)	0.09	<0.0001	<0.0001			
Target vessel revascularisation	33 (24-2%)	21 (16.6%)	58 (45.1%)	0.18	0.0001	<0.0001			
Death or myocardial infarction	6 (4·4%)	9 (6-9%)	9 (6.8%)	0.35	0.36	0.97			
Death, myocardial infarction, or target lesion revascularisation	32 (23-5%)	25 (19-3%)	61(46-2%)	0.50	<0.0001	<0.0001			

Data are n (%). Percentages are Kaplan-Meier estimates. PEB-paclitaxel-eluting balloon. PES-paclitaxel-eluting stent.

Table 4: Clinical results at 1 year by treatment group

<u>RCT</u>

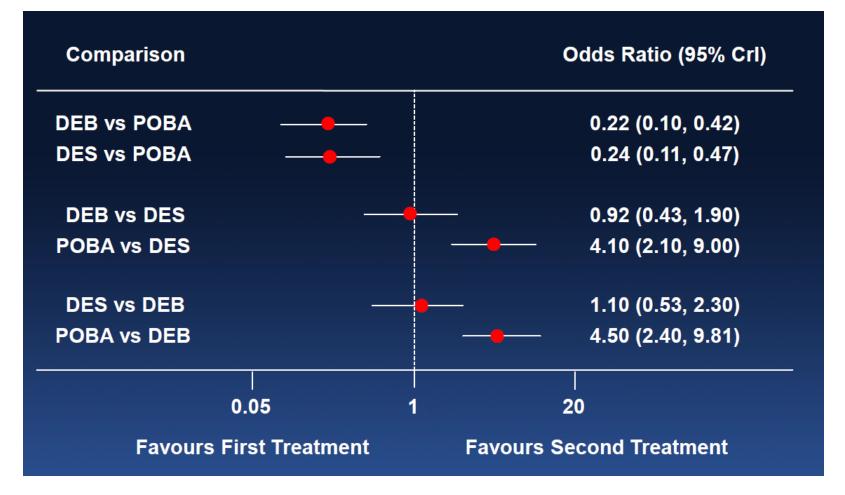
402 patients 137 (34%) were assigned to PEB 131 (33%) to PES 134 (33%) to balloon angioplasty

Byrne AB et al. Lancet 2013

Comparison Among Drug-eluting Balloon, Drug-eluting Stent, and Plain Balloon Angioplasty for Treatment of In-Stent Restenosis: A Network Meta-analysis of 11 Randomized Controlled Trials

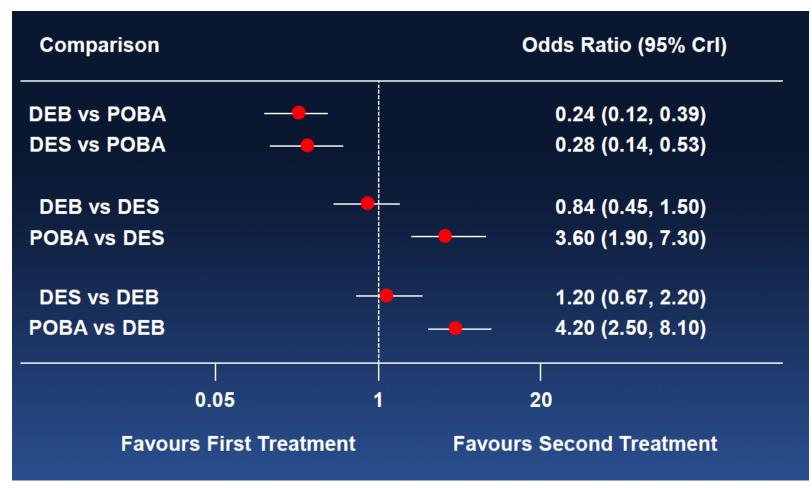
Total Pts = 2059, Treatment : POBA = 557; DES = 808; DEB= 694

Trial (Year)	Ago	Proportion of Co-morbidities		Pre-MLD (mm)		Pre-DS (%)		Lesion Length (mm)		Post-MLD (mm)		Post-DS (%)		
	Age	HTN	DM	Dyslipid	Group1	Group2	Group1	Group2	Group1	Group2	Group1	Group2	Group1	Group2
ISAR-DESIRE (2005)	64.3	54.3%	27.7%	56.7%	DES 0.94	POBA 0.95	DES 62.4	POBA 61.8	DES 11.95	POBA 12.3	DES 2.54	POBA 2.07	DES 9.35	POBA 19.9
RIBS-II (2008)	64.0	54.7%	34.7%	61.3%	DES 0.74	POBA 0.70	DES 72.0	POBA 74.0	DES 16.9	POBA 15.7	DES 2.69	POBA 2.29	DES 8.0	POBA 40
PEPCAD-II (2009)	64.8	81.7%	29.8%	74.8%	DEB 0.74	DES 0.77	DEB 73.9	DES 72.8	DEB 15.7	DES 15.4	DEB 2.30	DES 2.56	DEB 19.5	DES 11.2
Habara et al. (2011)	69.4	64.0%	62.0%	62.0%	DEB 0.99	POBA 0.92	DEB 64.1	POBA 68.4	DEB 12.7	POBA 13.2	DEB 1.99	POBA 2.00	DEB 25.7	POBA 31.0


ISAR-DESIRE 3	67.0	72 604	41.5%																POBA
(2012)	07.9	13.0%	41.370	11.970	0.97	0.93	0.88	64.4	66.7	67.7	N/R	N/R	N/R	2.29	2.53	2.10	18.5	12.8	23.3

PEPCAD-DES (2012)	67.8	94.5%	35.4%	78.2%	DEB 0.66	POBA 0.62	DEB 72.1	POBA 74.0	DEB 11.2	POBA 12.2	DEB 2.15	POBA 2.14	DEB 12.6	POBA 13.7
PACCOCATH-ISR I&II Pooled Analysis (2012)	65.9	81.5%	26.9%	75.0%	DEB 0.70	POBA 0.63	DEB N/R	Poba N/R	DEB 18.6	POBA 18.3	DEB 2.34	POBA 2.43	DEB N/R	Poba N/R
CRISTAL (2012)	67.7	75.1%	39.1%	79.2%	DES 1.09	POBA 1.18	DES 58.8	POBA 53.7	DES 14.6	POBA 13.4	DES 2.51	POBA 2.12	DES 9.5	POBA 18
Habara et al. (2013)	69.0	84.6%	44.7%	82.7%	DEB 0.86	POBA 0.84	DEB 65.6	POBA 66.1	DEB 12.8	POBA 13.7	DEB 1.97	POBA 1.90	DEB 21.9	POBA 23.1
PEPCAD China ISR (2014)	61.9	68.4%	36.7%	34.0%	DEB 0.85	DES 0.86	DEB 68.3	DES 68.4	DEB 12.5	DES 13.1	DEB 2.39	DES 2.56	DEB 10.5	DES 7.1
RIBS V (2014)	65.5	72.0%	25.9%	69.3%	DEB 1.02	DES 0.93	DEB 61.0	DES 65.0	DEB 13.7	DES 13.8	DEB 2.16	DES 2.38	DEB 19.0	DES 11.0

JM Lee, TCT 2014


Target Lesions Revascularization

JM Lee, TCT 2014

MACE

JM Lee, TCT 2014

In- BVS Restenosis

Early (before 6 months), late (6-12 months) and very late (after 12 months) angiographic scaffold restenosis in the ABSORB Cohort B trial

Shimpei Nakatani", MD; Yochinobu Omma"*, MD; Yuki Ishibashi", MD, PhD; Takashi Muramatsu", MD, PhD; Javaid Iqbal', MRCP, PhD; Yao-Jun Zhang', MD, PhD; Robert-Jan van Geuns', MD, PhD; John A. Ormiston', MBChB, PhD; Patrick W. Serruys', MD, PhD; on behalf of the ABSORB Cohort B investigators

1. Thorazonto, Eramut Medical Conto, Rottorkon, The Netherlands; 2. Auckland City Hospital, Auckland, New Zealand

(R/PST EDITOR: Rafael Beyar, MD, DSc, MPH, Director, Rambam Health Care Campus, Women's Division-Dr Philip and Sara Gatlieb Chair, Department of Medicine and Riomedical Engineering, Technion, Israel

- Total patients recieving BVS = 101
- In-BVS Restenosis = 6 (6%)

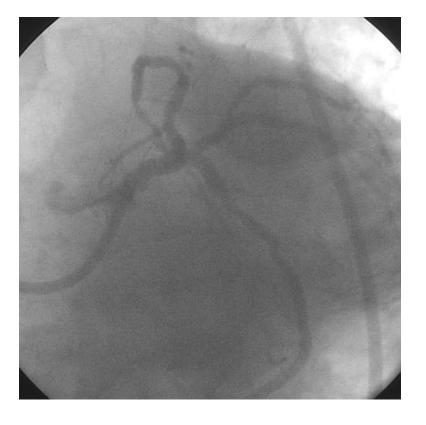
KEYWORDS + biorescribable scatolid + everotimus + intravecular imaging + long-torm follow-up + rushenosis

Abstract

Aims: The long-term follow-up of the first-in-man ABSORB Cohort B trial showed that angiographic binary restension can recent early, fate or very late after implantation of the Absorb everoliman-cluting hieresorthable vascular scaffold (Absorb BVS). Since the mechanical support of the scaffold decreases during hieresorption, the mechanism of in-segment restensis (SSR) of the Absorb BVS might be different from that of metallic starts. The objective of the current analysis was to review the multimodality imaging of cases with binary restension to clucidate the exclusions of ISR after Absorb BVS implantation.

Methods and results: The ARSORB Cohort H trial enrolled 101 patients with a maximum of two de nove resenary lesions. At the three-year imaging and clinical follow-up, there were nix cases of in-segment binary resteroois: two early ISR (<f months), use late ISR (6-12 months) and three very late ISR (>12 months). Three of three ISR cases seemed to be induced by matomical or procedural factors, in the other three cases, intravocedule imaging (IVUS/OCT) demonstrated that the main mechanism of resteroois was significant intra-scaffold insise growth, while the structural circularity and diameter of the scaffold were not affected.

Conclusions: Early and late restencess after implantation of the Almorb bioresorbable scaffold could be related to anatomical or procedural factors. In this small colort of patients late or very late restences seems to be stributed to pure intra-scaffold insue growth without extrinsic encroachement of the scaffold.


*Cornesponding author: Thoracenter, Ba-383, 's Gravendykwal 230, 3015 CE: Rotendam, The Netherlands, E-mail: solidinobuomana@gmail.com

40 Europa Digital & Publishing 2014. All rights reserved.

- Managment :
 - CABG = 1
 - DES = 5

Diffuse ISR : CABG could be the best option ...

Post LM Trifurcation Stenting

After 5-month : diffuse ISR

European Heart Journal Advance Access published August 29, 2014

European Heart Journal doi:10.1093/eurheartj/ehu278

ESC/EACTS GUIDELINES

2014 ESC/EACTS Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

Restenosis		
Repeat PCI is recommended, if technically feasible.	L.	С
DES are recommended for the treatment of in-stent re-stenosis (within BMS or DES).	1	A
Drug-coated balloons are recommended for the treatment of in-stent restenosis (within BMS or DES).	I.	A
IVUS and/or OCT should be considered to detect stent-related mechanical problems.	lla	С

Final Remarks

- POBA alone is not an effective treatment for ISR
- The results of clinical trials showed superior efficacy of DEB and DES, compared with POBA ,and similar efficacy between DEB and DES.
- DEB might be the suitable first line treatment option for both BMS and DES ISR, especially in patients who cannot tolerate long-term DAPT.
- CABG Should be considered in patient with diffuse and complex distal Left Main ISR
- Imaging (IVUS / OCT) and functional (FFR) evaluation are extremely recommended for a more appropriate management

Thanks for your attention