TAVI – Summit 2012 Seoul, September 8, 2012

Next Generation TAVI Systems

Eberhard Grube MD, FACC, FSCAI

University Hospital, Dept of Medicine II, Bonn, Germany Hospital Alemão Oswaldo Cruz, São Paulo, Brazil Stanford University, Palo Alto, California, USA

Disclosure Statement of Financial Interest

Within the past 12 months, the presenter or their spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Physician Name

Eberhard Grube, MD

Company/Relationship

Medtronic, CoreValve: C, SB, AB, OF

Sadra Medical: E, C, SB, AB

Direct Flow: C, SB, AB Mitralign: AB, SB, E

Symetis: AB

Boston Scientific: C, SB, AB

Biosensors: E, SB, C, AB

Cordis: AB

Kona Medical: E, AB Maya Medical: E, AB Abbott Vascular: AB Capella: SB, C, AB InSeal Medical: AB

Valtec: E, SB Claret, SB

TAVI - Current Issues

Device related Issues

- Lack in Control and Accuracy in Positioning
- Lack of Retrievability
- Paravalvular Leack
- Access SiteComplications
- Stroke
- Pacemaker Need
- Profile size

New TAVI valves are coming to the market in a few year's time

Today

Tomorrow

Next Gen. Medtronic CoreValve

Boston Sci. Lotus™

HLT

Medtronic CoreValve

Edwards Sapien XT

Medtronic Engager

Saint Jude Portico™

Direct Flow

Edwards Sapien

Edwards Sapien XT

JenaValve

Symetis ACCURATE

CoreValve Innovation

Focused Efforts on:

- Expansion of patient access
- Further improvement of ease of use
- Continue to advance patient and procedural outcome

CoreValve Evolut Innovation Pipeline

Recapturable after Valve Deployment

Retrievable, Repositionable, Resheathable

- More control for final valve deployment → Should contribute to reduced PVL and conduction disturbance
- Repositionable system with 18 Fr delivery across full valve size range

...Expect CE Mark Trials on Two New Valve Platforms in 2012

Edwards
SAPIEN 3
Valve

Balloon Expandable

Edwards
CENTERA
Valve

Self Expanding

* The Edwards SAPIEN XT valve, the Edwards SAPIEN valve with the Ascendra delivery system, the Edwards SAPIEN 3 valve and the Edwards CENTERA valve are investigational devices and are not available for commercial sale in the U.S.

SAPIEN 3 Advances

Ultra Low-Profile Balloon Expandable Platform

- Designed to further reduce PV leaks
- Lower profile valve delivered through a14 Fr eSheath
- Discrete valve that anchors in the annulus
- Treated bovine pericardial tissue leaflets
- Dramatically reduced profile for the transapical approach

CENTERA is Edwards' First Self- Expanding Transcatheter Valve

Ultra Low-Profile Self Expanding Platform

- Motorized delivery system for stable deployment and single operator use
- Repositionable
- Delivered through a 14 Fr eSheath
- Discrete valve that anchors in the annulus
- Treated bovine pericardial tissue leaflets
- Transfemoral and subclavian approach

First-in-Man Experience Completed

The Lotus[™] Valve System Product Details and Design Goals

Device Delivery:

- Nitinol valve frame
- No balloon inflation or rapid pacing of heart for insertion
- Introducer sheath same outer diameter as commercially available 18F sheaths

Device Positioning:

- Self-centering
- Controlled positioning for accurate placement
- Fully retrievable (before release)
- Valve begins functioning early in deployment process

Device Implant:

- Bovine pericardium tri-leaflet aortic valve
- Adaptive[™] Seal conforms to irregular surfaces of native anatomy to minimize perivalvular leaks

Sadra Lotus™ Valve Concept

- Braided nitinol stent structure
- Radial expansion as it shortens
 - Enables a more flexible delivery system
 - Enables device repositioning or retrieval
 - Provides significant radial strength

The Lotus[™] Valve System Components and Function

Nitinol Frame designed for retrieval and repositioning

Locking Mechanism

Bovine
Pericardium
Long-Term
Proven
material

Adaptive Seal

Designed to conform to irregular anatomical surfaces, and to minimize perivalvular leaks

REPRISE Clinical Program

REI	PRI	SE I
Fea	sib	ility

Objective s	To assess the acute safety and performance of the Lotus™ Valve System for transcatheter aortic valve replacement (TAVR) in symptomatic patients with calcified stenotic aortic valves who are considered high risk for surgical valve replacement.
Primary Endpoint	Clinical procedural success: Device Success without in- hospital MACCE thru discharge or 7d post-procedure
Valve size	23 mm

nts in Australia

Principal Investigator: Prof. Ian Meredith

- Prof. Ian Meredith, Monash Heart Center
- Prof. Rob Whitbourn, St. Vincent Hospital
- Prof. Stephen Worthley, Royal Adelaide Hospital

The Lotus Valve System is an investigational device, not available for sale. See glossary.

REPRISE Clinical Program

REPRISE	II
CE Mark	

Objectives	To evaluate the safety and performance of the Lotus™ Valve System for transcatheter aortic valve replacement (TAVR) in symptomatic subjects with severe calcific aortic stenosis who are considered high risk for surgical valve replacement.
Primary Endpoint	Device Performance Endpoint: Mean aortic valve pressure gradient at 30d
	Safety Endpoint: All-cause mortality at 30d
Valve size	23 and 27 mm
N	120 patients in Australia, France, Germany, UK

Principal Investigator: Prof. Ian Meredith

- Prof. Ian Meredith, Monash Heart Center
- Prof. Rob Whitbourn, St. Vincent Hospital
- Prof. Stephen Worthley, Royal Adelaide Hospital

- Dr. Simon Redwood, St. Thomas Hospital
- Dr. Ganesh Manoharan, Royal Victoria, Belfast
- Dr. Daniel Blackman, Spire Leeds Hospital
- Dr. David Hildick-Smith, Royal Sussex

- Prof. Thierry Lefevre, Institut Jacques Cartier
- Dr. Didier Tchetche, Clinique Pasteur
- Prof. Gilles Rioufol, Univ. De Lyon
- Prof. Didier Carrie, CHU de Rangeuil

- Prof. Peter Boekstegers, Helios Klinikum, Siegburg
- Prof. Rudiger Lange, German Heart Center, Munich
- Prof. Friedrich Mohr, Herzzentrum, Leipzig

Primary Endpoint- Discharge/7 Days REPRISE I (N=11)

Measure	Patients
Clinical Procedural Success (per patient)	9/11
Device Success	10/11
Successful access, delivery, deployment, valve positioning, delivery system retrieval	11/11
Intended valve performance ^a	10/11
One valve implanted	11/11
No MACCE through discharge or 7 days ^b	10/11

Values are n/N

Presented by Ian Meredith, MBBS. PhD. at EuroPCR 2012 a: $AVA > 1.0 \text{ cm}^2$ plus either a mean aortic valve gradient <20 mmHg or peak velocity <3m/sec, without moderate/ severe prosthetic valve aortic regurgitation

b: Major adverse cardiovascular or cerebrovascular events including all-cause mortality, peri-procedural MI ≤72 hours, major stroke, urgent/emergent conversion to surgery or repeat procedure for valve-related dysfunction

Aortic Regurgitation Discharge Transthoracic Echocardiography

No Moderate / Severe AR by Independent Adjudication

Mean Aortic Gradient by Patient REPRISE I (N=11)

Presented by Ian Meredith, MBBS. PhD. at EuroPCR 2012 VARC=Valve Academic Research Consortium; *J Am Coll Cardiol* 2011, 57:253

Aortic Valve Area by Patient REPRISE I (N=11)

Presented by Ian Meredith, MBBS. PhD. at EuroPCR 2012 VARC=Valve Academic Research Consortium; *J Am Coll Cardiol* 2011, 57:253 "Discharge" is defined as discharge or 7 days post-procedure, whichever comes first

MACCE REPRISE I- Discharge/7 Days (N=11)

Characteristic	Patients
In-hospital MACCE	1/11
All cause mortality	0/11
Peri-procedural MI (≤72 hours)	0/11
Major stroke ^a	1/11
Urgent/emergent conversion to surgery or repeat procedure for valve-related dysfunction	0/11

Presented by Ian Meredith, MBBS. PhD. at EuroPCR 2012
a: Preliminary adjudication is major stroke; final adjudication per VARC will occur at 90 days
"Discharge" is defined as discharge or 7 days post-procedure, whichever comes first. MACCE=major adverse cardiovascular and
cerebrovascular events; MI=myocardial infarction

IC-86504-AA May 2012

Symetis ACURATE TFTM and TATM Bioprosthesis

- Porcine pericardium
- Self-expanding nitinol stent
- Stent covered inside and out with double porcine pericardium skirt

ACURATE™ Highlights

Trans Apical:

- FIM (n=40) 6M results @ EACTS 2011
- Pilot (n=50) 30D results @ TCT 2011
- FIM (n=40) 1Y results @ AHA 2011
- Pivotal (n=150) enrollment start Q4 2011
- SAVI post-market registry (n=250) with commercial implants
- Received CE Certification in November 2011 for commercial use

Trans Femoral:

- FIM (n=20) enrollment start Q1 2012 (Brazil/Germany/France)
- Pilot (n=50) enrollment start Q3 2012

ACURATE TF™ 3-Step Implant

Initial Alignment

1. Upper Crown & Gentle Push

2. Stabilization Arches

3. Full Release

ACURATE TA™ Bioprosthesis

- Treats native annuli from 21mm to 27mm
- Repositionable, self-aligning
- Composed of:
 - Biologic porcine tissue valve for long term durability
 - Self-expandable nitinol stent = form fit
 - PET skirt for **Ψ** PV leak

First Human Use (FHU)

- 3 patients treated in Sao Paulo by Dr. Alex Abizaid
- Feasibility proven 3 successful implants
- 3 patients discharged home and well at 5 months
- No reported MACCE to date and follow-up ongoing
- Easy catheter tracking and implantation (tactile feedback)
- No procedure difficulties
- Demonstrates good hemodynamics, low leak
- Green light to start TF FIM!

FHU 001

- Good initial positioning
- Easy upper crown positioning
- Controlled deployment
- Minimal leak
- Low gradient
- First patient, first success

ACURATE TF™ FHU Outcomes

n		2
	14	ч,
т.		

Patient 001
Male, 78 y/0
STS Score: <6
NYHA Class III

AAn: 24.0 cm²

Patient 002 Female, 72 y/0

STS Score: <6 NYHA Class III

AAn: 22.5 cm²

Patient 003

Female, 92 y/o

STS Score: ≥6

NYHA Class III

AAn: 22.4 cm²

Assessment	Screening TTE	30D
Mean Gradient	57 mmHg	7.8 mmHg
AVA/EOA	0.7 cm ²	1.9 cm ²
Peak jet	4.9 m/s	2.1 m/s
PVL / IVL	n/a	+1/0
Mean Gradient	48 mmHg	11.1 mmHg
AVA/EOA	0.8 cm ²	1.8 cm ²
Peak jet	4.3 m/s	2.2 m/s
PVL / IVL	n/a	0/0
Mean Gradient	65 mmHg	9.6 mmHg
AVA/EOA	0.4 cm ²	1.9 cm ²
Peak jet	5.2 m/s	2.4 m/s
PVL / IVL	n/a	+1/0

TF FIM Design

Design Prospective, multicenter, non-

randomized, open

Purpose Feasibility

Enrollment 20 patients

Number

Follow-up Visits Post-procedure, 7 & 30D and 12M

TeleCheck 6M and 2, 3, 4 & 5Y

Clinical Sites (1) BR, (3) DE, (1) FR

Study Start FPI in MAY 2012

Primary ACM @ 30D

Endpoint

Secondary 1. MACCE @ 30D and 12M

Endpoints

2. NYHA Class @ 30D and 12M

Dress dural success post imp

3. Procedural success post-implant

4. Device success @ 30D and 12M

TF FIM Enrollment

SITE	MAY	JUN	Total
Bad	2	3	5
Nauheim			
Hamburg	1	4	5
Bonn	3	3	5
Sao Paulo	3	2	5
TOTAL	9	10	20

ACURATE TF™ Take Away

- Successful FHU in Brazil (n=3)
- Currently enrolling in TF FIM trial (n=20)
- 9 patients implanted in Brazil and Germany to date
- TF Pilot (n=50) in Q4
- TF FIM + TF Pilot = TF 70
- TF 70 = CE Mark in 2013

FIM Gradient

FIM EOA

FIM PV Leak

12M FU: 96.7% of patients $= \le +1$ PVL Only 1 patient $\ge +2$ PVL

FIM NYHA

12M FU: 90% of patients with improvement from baseline

Direct Flow Medical

2 sizes matching valvuloplasty balloons

22F Design

18F Design

DFM Aortic Valve Aortic Insufficiency – PV Leaks

Conformable cuff design and precise positioning maximizes sealing to prevent PV leaks

Direct Flow Valve

Designed for Patient Safety

- "Surgical" valve design
- Repositionable & Removable
- Minimizes PV Leaks and Al
- Deliverability/Profile
- Immediately competent
- Durability

Unique design allows assessment of patient outcomes prior to final device deployment

2 Year Imaging Follow Up

Bijuklic et al, Circulation Cardiovasc Interv, Nov 2011

2 Year Data (EU Feasibility Trial)

2 Year Data (EU Feasibility Trial)

* As measured by TTE

2 Year Data (EU Feasibility Trial)

St Jude Medical (Portico Transcatheter Heart Valve)

St. Jude Medical TAVI System: Next Generation Design Features

Unique self expanding stent design provides the ability to...

- Re-sheath*
- Reposition
- Retrieve*

... the valve at implant site

Bovine and porcine pericardial valve with Anti-calcification technology **

Anti-calcification technology is used on SJM Epic™ and Trifecta™*** surgical aortic valves Open stent cell design allows access to coronaries and low crimp profile

Tissue cuff designed to minimize PV leak

Low placement of leaflets/cuff within the stent frame allows for minimal protrusion into the LVOT

^{*} Until fully deployed

^{**} There is no clinical data currently available that evaluates the long-term impact of anticalcification tissue treatment in humans.

^{***} Trifecta is an investigational device in the US and is not commercially available.

St. Jude Medical TAVI System: Next Generation Design Features

- Nitinol self expanding stent
- Open stent cell allows access to coronaries and low crimp profile
- Bovine and porcine pericardial valve (Linx[™] anticalcification technology*)
- Low placement of leaflets/cuff within stent frame allows for minimal protrusion into the LVOT

St Jude Medical TAVI System *Program Status*

2010 > 2011 > 2012 > 2013

Pre-IDE meetings

First-in-man study

European trial

U.S. IDE submission

CE Mark

Jena Valve

- Self-expanding nitinol stent with flexible stent posts
- Porcine root valve
- Sizes 23,25,27
- 32F introducer sheath for transapical access

Jena Valve FIM Trial

30 d safety outcomes	FIM pts (N=10)
All cause death (30 d) cardiac death	0
Stroke	0
Myocardial infarction	0
Emergent cardiac surgery	1
Onset of AV block	0

Heart Leaflet Technology

