Intravascular Imaging Assessment of Late Stent Failure

Soo-Jin Kang, MD., PhD.

University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Disclosure Statement of Financial Interest

I, Soo-Jin Kang DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation

IVUS Mechanisms of DES Failure

	Early Throm	bosis	Restenosis		
Small MSA (Underexpansion)	•Fujii et al. JACC 2005;45:995-8 •Okabe et al., AJC 2007;100:615-20 •Liu et al. JACC Interv 2009;2:428-34 •Choi et al. Circ Interv 2011;4:239-47		 Sonoda et al. JACC 2004;43:1959-63 Hong et al. EHJ 2006;27:1305-10 Doi et al. JACC Interv. 2009;2:1269-75 Fujii et al. Circulation 2004;109:1085-8 Kang et al. Circ Interv 2011;4:9-14 Choi et al. AJC 2012;109:455-60 Song et al. CCI in press 		
Inflow/outflow tract disease	 Fujii et al. JACC 2005;4 Okabe et al., AJC 2007; Liu et al. JACC Interv 20 Choi et al. Circ Interv 20 	5:995-8 ;100:615-20 009;2:428-34 011;4:239-47	•Sakurai et al. AJC 2005;96:1251-3 •Liu et al.AJC 2009;103:501-6 •Costa et al. AJC 2008;101:1704-11		
Underexpansion	Residual PB	Edge dis	section	Intramural hematoma	
			Ľ		

Timing and Mechanism of **DES Thrombosis**

Early (<30d)	Late (1-12 Mo)	Very late (>12 Mo)
Procedural	Delayed healing	Abnormal vascular response
Underexpansion	Uncovered struts	Hypersensitivity
Edge dissection	Fibrin deposition	Extensive fibrin deposition
Residual plaque		Late malapposition?
		Neoatherosclerosis

Nakazawa et al. J Cardiol 2011;58:84-91

tct 25

Guagliumi JACC Interv 2010;3:531-9, *Guagliumi CCI* 2012, *Kim AJC* 2013;111:1-5, *Choi et al, Int J Cardiovasc Imag* 2012;28:491-7, *Kim Int J Cardiol* 2013, *Gutiérrez-Chico EHJ* 2011;32:2454-63, *Räber JACC Interv* 2012;5:946-57

Kang et al. Am J Cardiol 2010;105:1402-8

Vergallo et al. Am J Cardiol 2013;112:1315-21

Early neointima Fibrocalcific

ThCFA

TCFA I

Intimal rupture

Nakazawa et al. JACC Cariovasc Imaging 2009;2:625-8

Late ISR 63-year old male Stable angina

VLST 60-year old male AMI with VLST

IMAGES IN CARDIOLOGY

Neoatherosclerosis: The Missing Link Between Very Late Stent Thrombosis and Very Late In-Stent Restenosis

Fernando Alfonso, MD, Federico Fernandez-Viña, MD, Miguel Medina, MD, Rosana Hernandez, MD Madrid, Spain

How Frequent is Neoatherosclerosis the Mechanism of Stent Failure? Stent failure OCT data from AMC

	DES-ISR ¹	BMS-ISR ²	VLST ³	
Lesion	50 DES	51 BMS	6 BMS	27 DES
Median F/U	32 Mo	132 Mo	109 Mo	62 Mo
Lipid or NC	90%	100%	100%	100%
OCT-TCFA	52%	68%	100%	56%
OCT-rupture	58%	59%	100%	63%
TLR	98%	all	all	all

- *I. Kang et al. Circulation 2011;123:2954-63*
- 2. Kang et al. JACC Cardiovasc Imaging 2012;5:1267-8

. Kang et al. JACC Cardiovasc Imaging 2013;6:695-703 🎃 Columbia Uni

- NewYork-Presbyterian

In Vivo data from MGH OCT registry

<9 mo 9–48 mo >48 mo

Yonetsu et al. Am J Cardiol 2012;110:933–9

CardioVascular Research Foundation

Site-specific Neoatherosclerosis

Predictor of Peri-procedural MI

152 Patients with ISR, Median F/U 52.8 months

Treatment of ISR				
Balloon, N (%)	9 (6%)			
Cutting, N (%)	24 (16%)			
DEB, N (%)	9 (6%)			
DES, N (%)	94 (62%)			
Cutting+DEB, N (%)	16 (11%)			

Thin-cap thickness <60um

To predict peri-procedural MI (CK-MB>15ng/ml)

- Sensitivity 91%
- Specificity 58%

	TCFA			Intimal rupture			
	Yes (N=68)	No (N=84)	Р	Yes (N=71)	No (N=81)	Р	
Pre-PCI CK-MB	1.1 (0.5–2.3)	0.8 (0.5–1.5)	0.110	1.1 (0.4–2.2)	0.9 (0.6–1.7)	0.659	
Post-PCI CK-MB	2.0 (1.0–5.0)	1.4 (0.8–2.2)	0.012	2.0 (0.9–4.1)	1.3 (0.9–2.4)	0.017	
CK-MB>15ng/ml	9 (13%)	2 (2%)	0.010	9 (13%)	2 (3%)	0.015	
MACE at 2 years	5 (7%)	5 (6%)	0.729	5 (7%)	5 (6%)	0.829	

9tct2014

Kang et al. JACC Cardiovasc Imaging 2014 in press

– NewYork-Presbyterian

Neoatherosclerosis (NA) Predicts CK-MB elevation after PCI for ISR

	CK-MB e	Dyalua		
	Yes (N=20)	No (N=105)	n value	
%IH, %	44.7 (33.0 - 60.3)	33.1 (25.3 – 46.1)	0.020	
Max length of NA, mm	8.8 (1.5 – 10.4)	0 (0-1.0)	<0.001	
NA neointima, %	51.1 (8.1 – 74.2)	0 (0-8.0)	<0.001	
Cap thickness, µm	60.0 (50.0 - 60.0)	240 (170 – 430)	<0.001	
TCFA, %	11 (55%)	2 (2%)	<0.001	

Predictors of post-PCI CK-MB elevation
Maximal length of NA (OR=1.46, 95% CI=1.09-1.96)
TCFA at MLA (OR=14.32, 95% CI=1.11-183.6)

Lee et al. Catheter Cardiovasc Interv 2014 in press

Is LSM a Cause of VLST or a Marker of Underlying Vascular Inflammation?

Study	Lesions	Duration	%LSM	Reference			
Studies reporting the relationship							
Berne	221 (SES+PES)	5 years	18%	Eur Heart J 2012;33:1334-43			
MISSION-AMI (combined DES/BMS)	184 (SES+BMS)	5 years	38%	Eurointervention 2012;7:1021-9			
Studies reporting NO relationship							
AMC data	705 (SES+PES)	3 years	12%	J Am Coll Cardiol 2007;50:1515-6			
RAVEL, SIRIUS, E-SIRIUS	180 (SES)	4 years	25%	Heart 2008;94:322-8			
TAXUS IV, V, VI, Atlas Work horse, LL, Direct Stent	548 (PES)	3 years	6%	J Am Coll Cardiol Intv 2010;3:486-94			
HORIZONS-AMI*	286 (PES+BMS)	4 years	45%	J Am Coll Cardiol 2012;59:A74-A75			
Yonsei	356 (SES, EES, ZES, BES)	2 years	28%	Circ Cardiovasc Interv 2014;7:88-96			

Predictors of DES Late/Very Late ST In Vivo Case-Controlled Study (Median follow-up 615 days)

	ет	Matched	Univariate	Multivariate	
	51	controls	Р	OR	Р
ΟCT					
Length of segments with uncovered struts	3.3 mm	0.9 mm	<0.001	2.45	0.007
Cross-sections with >30% uncovered struts	21.6 %	0	0.002		
Malapposed skuts per pt.	4.6 %	1.8 %	0.001		
IVUS					
Minimum stent CSA	5.7 mm ²	5.9 mm ²	1.0		
Mean EEM CSA	19.4 mm ²	15.1 mm²	0.003		
Remodeling index	1.24	0.99	<0.001	1.05	0.019

Guagliumi et al. JACC Cardiovasc Intervent 2012;5:12-20

HORIZONS-AMI

3-year Clinical Outcomes

Late Stent Malapposition (LSM)

Yakushiji, Maehara et al. J Am Coll Cardiol 2012;59:A74-A75

Effect of Stent Fracture Increased intimal hyperplasia at the fracture site

DES Failure Associated with Fracture

Kang et al. JACC Cardiovasc Imaging 2013 in press

- NewYork-Presbyterian

Mechanical Complication in EES-ISR

- Mechanical complication in 17 (9.6%) of 177 pts
- Focal ISR in 94%
- 13 patients: longitudinal deformation or strut fracture with overlapping of proximal and distal stent fragments
 - \rightarrow 35.5±12.2% smaller stent area
 - \rightarrow excessive IH (>50%) in 92%

Overlap EES fracture Overlap EES deformation

Inaba, Maehara et al. EuroIntervention 2014;9:1301-8

Summary

 Intravascular imaging is useful to assess the precise mechanism of late stent failure

 Procedural factors are responsible for early ST, while delayed arterial healing and abnormal vascular responses affect in the later phase

- Neoatherosclerosis is a common mechanism of very late stent thrombosis and restenosis
- Mechanical complications strut deformation and fracture potentially contribute to late stent failure

