Visual-Functional Mismatch

Soo-Jin Kang, MD., PhD.

Department of Cardiology, University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Disclosure Statement of Financial Interest

I, Soo-Jin Kang DO NOT have a financial interest /arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation

, CardioVascular Research Foundation

QCA-DS vs. FFR

(1129 lesions with DS >30%) who underwent IVUS and FFR

ClinicalTrials.gov NCT01366404

1066 Non-LM lesions

63 LM lesions

Park et al. JACC interv 2012;5:1029-36

Meta-analysis of 11 Clinical Trials

1759 patients with 1953 lesions

Predict FFR<0.80 Weighted MLA 2.61mm² Pooled sensitivity 79% Pooled specificity 65%

Smaller Cut-off than Used Poor Accuracy

Nascimento et al. Catheter Cardiovasc Interv 2013 (in press)

CardioVascular Research Foundation

All Subgroup-specific MLA, accuracies <70-75%

Kang et al. Am J Cardiol 2012;109:947-5

Why Mismatch

Nov 2009-Jun 2011, 1000 consecutive patients (1129 lesions with DS >30%) who underwent pre-PCI IVUS and FFR (ClinicalTrials.gov NCT01366404)

Factors Affecting FFR

	Beta	p-value	95% CI
Age	0.008	<0.001	0.004 - 0.011
LAD location	-0.386	<0.001	-0.462 - 0.311
Lesion length	-0.006	<0.001	-0.009 - 0.003
Minimal lumen area	0.185	<0.001	0.149 - 0.222
Plaque burden	-0.006	<0.004	-0.009 - 0.003
Plaque rupture	-0.165	0.020	-0.302 - 0.027

Multivariable Analysis Predicting FFR in 700 LAD lesions of 700 patients

*Including age, female, body surface area, smoking, angiographic DS, minimal lumen diameter, lesion length, IVUS-MLA, plaque burden, averaged reference EEM area and %area stenosis, [†]addition of left ventricular mass

	Total (700 patients)*		608 patients with echo data $^+$			
	ß	p value	95% CI	ß	p value	95% CI
Age	0.119	0.001	0.000–0.002	0.192	<0.001	0.001–0.002
BSA	-0.111	0.002	- 0.101– -0.024			
LV mass				-0.121	<0.001	-0.001 - 0.000
Angiographic DS	-0.185	<0.001	-0.002 – -0.001	-0.190	<0.001	-0.0020.002
Lesion length	-0.110	0.001	-0.001 – 0.001	-0.077	0.027	-0.001 – 0.000
IVUS-MLA	0.312	<0.001	0.022 – 0.035	0.294	<0.001	0.019 – 0.032
Plaque burden	-0.115	0.002	0.001 – 0.000	-0.157	<0.001	-0.002 – -0.001

Kang S-J et al. J Am Coll Cardiol Intv 2013;6:562-8

CardioVascular Research Foundation

Impact of Myocardial Territory on FFR

Myocardial area subtended to the artery distal to the stenosis evaluated by angiography using a modified APPROACH score

Shiono et al. Catheter Cardiovasc Interv 2014;84:406-13

Multivariable Logistic Regression to Predict FFR<0.80

	OR	95% CI	P value
Minimum lumen diameter	0.031	0.013–0.076	< 0.001
Lesion length	1.038	1.009–1.069	0.001
Myocardial supply area (modified APPROACH)	1.113	1.079–1.147	< 0.001

Shiono et al. Catheter Cardiovasc Interv 2014;84:406-13

↑ 0.95 0.70 0.74 0.65

$LM MLA 6.2mm^2$

LM TCFA

FULSAN 🛞 ASAN Medical Cer

FFR 0.81 FFR 0.72 FFR 0.60 FFR 0.54

Complex or irregular lumen produces greater flow resistance and energy loss of fluid, thus resulting in pressure drop and FFR

Park et al. JACC interv 2012;5:1029-36

Ostial/Shaft LMCA Disease

Ostial LM 60%

PRINT EDIT RENAME EXPORT ERASE SETUP PRINT EDIT RENAME EXPORT ERASE **BETUR** 98 2010-07-12 10:14:15 JGL38957092 OK T40261531 2010-05-31 11:13:18 168 10.565 0.95 180 69 0.90 6.85 170 160 0.00 Pd mean 0.80 160 0.700.86 150 0.75 150 0.75 140 FFR FFR 130 0,65 120 0.60 0.60 0.50 100 0.45 0.45 90 0.40 80 0.40 0.35 16.24 0.35 118.72 70 CURSOR CURSOR 0.30 0.2550 0,21 40 0.15 aò 1 ŵ 100 惦 RESET

CardioVascular Research Foundation

LM MLA 4.5mm²

Matched with FFR <0.80 Ostial and Shaft LM Disease (N=112)

Sensitivity	79%
Specificity	80%
PPV	83%
NPV	76%

Park SJ et al. JACC Interv 2014;7:868–74

Independent Factors of LM FFR<0.80

	Odds ratio	95% CI	р
Model 1			
Plaque rupture	4.47	1.35 – 14.8	0.014
BMI, kg/m²	1.19	1.00 – 1.41	0.05
Age, yrs	0.95	0.90 – 1.00	0.031
MLA, mm ²	0.37	0.25 – 0.56	<0.001
Model 2 including Echo-LV mass			
LV mass, g	1.01	1.00 – 1.03	0.03
Age, yrs	0.94	0.90 - 0.99	0.021
MLA, mm ²	0.34	0.21 – 0.54	<0.001

The suboptimal accuracy of LM-MLA is not surprising

Park SJ et al. JACC Interv 2014;7:868–74

SB Jailing *V-F Mismatch*

Post-PCI MLA of SB (mm²) *Kang et al. CCI 2013;82:1072-82*

D Reinventing the Future Every Year

SB Jailing After LM Stenting Post-stening LCX Stenosis vs. FFR

Kang et al. Catheter Cardiovasc Interv 2014;83:542-52

Why Mismatch

- Lesion eccentricity of SB
- Negative remodeling of ostium
- Various size of myocardium
- Strut artifacts
- Focal carina shift

CardioVascular Research Foundation

Kang et al. Circ Cardiovasc Interv 2011;4:355-61

Mechanism of In-stent Restenosis

Underexpansion

Intimal HP

Edge Restenosis

Predictors for Functionally Significant In-stent Restenosis (Positive SPECT)

175 patients with ISR of a single coronary artery

In-seg MLA≤1.9mm²

sensitivity 67% specificity 75% accuracy 70% **%IH**>68%

accuracy 68%

Kang et al. JACC Cardiovasc Imaging 2013 6:1183-90

Multivariable Analysis for Predicting Positive SPECT in ISR Lesions

	OR	95% CI	р
Diabetes	2.41	1.02–5.68	0.046
In-segment angiographic DS	1.06	1.03–1.09	<0.001
In-segment IVUS-MLA	0.30	0.14–0.63	0.001
Underexpansion (MSA<5mm ²)	2.91	1.19–7.07	0.019
Proximal 1/3 location of MLA	4.62	1.75–12.18	0.002
Multi-focal or diffuse ISR	2.50	0.99–6.28	0.050

Kang et al. JACC Cardiovasc Imaging 2013 6:1183-90

Summary

 IVUS-MLA poorly predicts ischemia. In pure LMCA, MLA can be alternatively used

 Although angiographic SB jailing is common after MB stenting, either angiographic DS or SB-MLA rarely predicts ischemia

 IVUS provides the mechanism of ISR, while MLA cannot predict functional significance

