Mitral Valve Interventions: What's Next?

David J. Cohen, M.D., M.Sc.

Director of Clinical and Outcomes Research Cardiovascular Research Foundation, New York, NY

> Director of Academic Affairs St. Francis Hospital, Roslyn NY

Disclosures

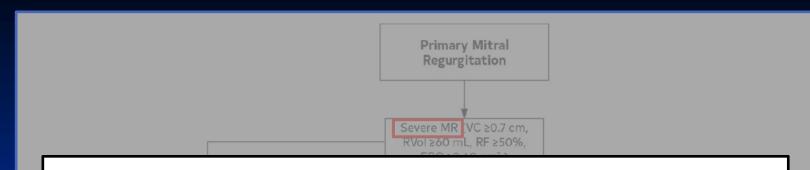
Grant Support/Drugs

– MyoKardia/BMS

Grant Support/Devices

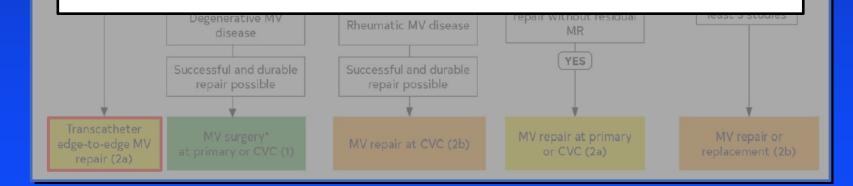
- Edwards Lifesciences
- Boston Scientific
- Corvia
- I-Rhythm

Consulting/Advisory Boards

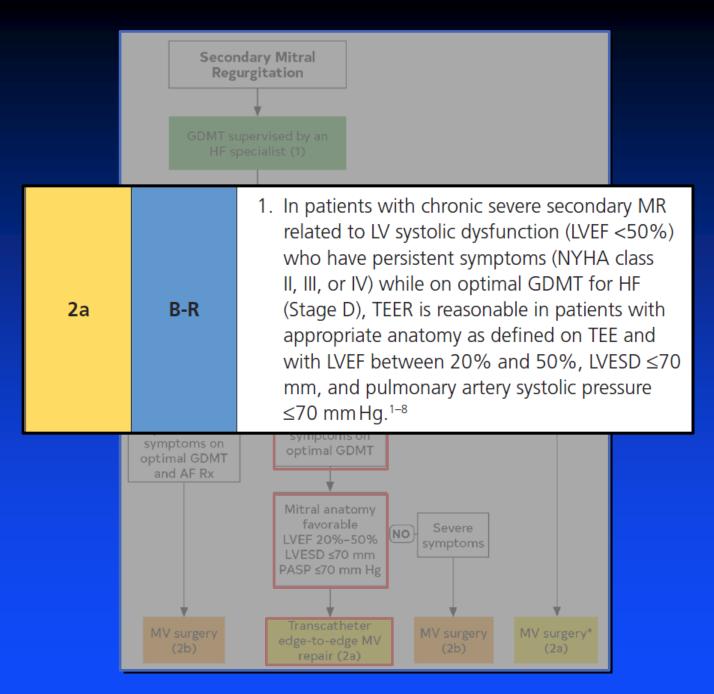

- Medtronic
- Boston Scientific
- Corvia

- Abbott Vascular
- CathWorks
- Phillips
- Zoll/Therox
- Edwards Lifesciences
- Abbott Vascular
- Impulse Dynamics

- Current guidelines— where do things stand?
- Expanding indications for TEER
- Where will transcatheter mitral valve replacement fit in?


- Current guidelines— where do things stand?
- Expanding indications for TEER
- Where will transcatheter mitral valve replacement fit in?

AHA/ACC Guidelines: Primary MR



6. In severely symptomatic patients (NYHA class III or IV) with primary severe MR and high or prohibitive surgical risk, transcatheter edge-toedge repair (TEER) is reasonable if mitral valve anatomy is favorable for the repair procedure and patient life expectancy is at least 1 year: ^{17,18}

AHA/ACC Guidelines: Secondary MR

- Current guidelines— where do things stand?
- Expanding indications for TEER
- Where will transcatheter mitral valve replacement fit in?

Repair MR Trial: Design

Patient Population

- Patients with severe primary MR who are either age > 75 OR at moderate surgical risk (defined as STS-PROM >2% or presence of specific comorbidities that increase risk)
- All patients suitable for surgical MV repair (local Heart Team) and M-TEER (Eligibility Committee) with high likelihood of achieving 1+ MR

- 500 pts randomized 1:1 to M-TEER with MitraClip or surgical repair
- Approximately 60 study sites in U.S., Canada, and Europe
- Sponsor = Abbott

Endpoints and Follow-Up

Primary Endpoints	 <u>Co-Primary Endpoint #1</u>: All-cause mortality, stroke, cardiac rehospitalization, or AKI at 2 years (cardiac hospitalizations in first 30 days excluded) <u>Co-Primary Endpoint #2</u>: >2+ MR or need for recurrent MV intervention within 2 years
Secondary Endpoints	 Discharge to home Hospital LOS QOL (KCQQ) at 2 years
Follow-up	Through 10 years

PRIMARY Trial

PRIMARY: Percutaneous versus Surgical Repair In Mitral Prolapse And Regurgitation for Patients <u>>65 Years</u>

Jo Chikwe MD, Marty Leon MD, Patrick O'Gara MD, Michael Mack MD, Michael Acker MD, Michael Borger MD, Marissa Miller DVM MPH, Kathleen Fenton MD, Gorav Ailawadi MD MBA, James Gammie MD, Alexander Iribarne MD, Stephen Fremes MD, Marc Gillinov MD, Isaac George MD, Nicholas Freemantle PhD, Judy Hung MD, Bart Ferket MD, Natalia Egorova PhD, Anu Lala MD, Donna Mancini MD, Jessica Overbey MD, Alan Moskowitz MD, Emilia Bagiella PhD, Annetine Gelijns PhD

27th January 2021

National Heart, Lung, and Blood Institute National Institute of Neurological Disorders and Stroke

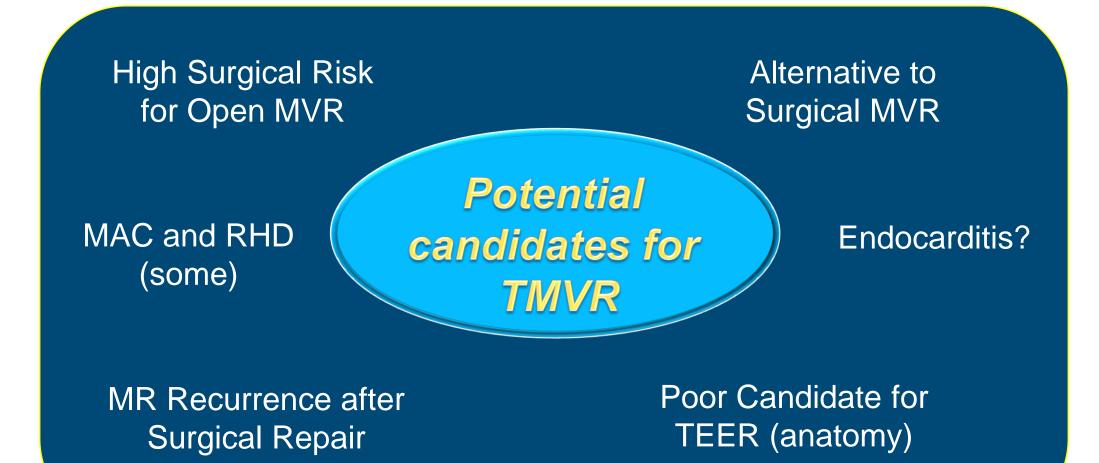
Slide Courtesy: Dr Joanne Chikwe

PRIMARY Trial: Design

- \geq 65 years of age with 3+ or 4+ primary MR
- Accepted clinical indication for valve repair and both surgical and TEER strategies are feasible (Heart Team evaluation)
- Low, intermediate or high surgical risk
- Randomized to surgical mitral valve repair or TEER

PRIMARY Trial: Endpoints

Primary Endpoint


 All-cause mortality, valve re-intervention, hospitalizations/urgent visits for heart failure, or development of ≥ 3+ MR with a minimum follow-up of 3 years post randomization

Secondary Endpoints

- Adequacy of MR correction at 1-year post randomization
- Disease-specific quality of life as measured by the KCCQ through 5 years
- All-cause mortality, and valve re-interventions through 5, 8 and 10 years since randomization

- Current guidelines
 – where do things stand?
- Expanding indications for TEER
- Where will transcatheter mitral valve replacement fit in?

Do We Really Need TMVR?

Why is TMVR Developing More Slowly than Predicted? Technical and Clinical Root Causes

Clinical/Anatomical Market Targets

Large Ventricles

Large Annular Sizes

Non-Calcific Annuli

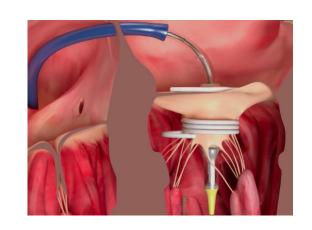
Low EF (<30%)

Why is TMVR Developing More Slowly than Predicted? Technical and Clinical Root Causes

Clinical/Anatomical Market Targets	Resulting Technological + Design Attributes	
Large Ventricles	Large Catheter Sizes = TA Route	
Large Annular Sizes	High Valve Profiles (Depth into LV)	
Non-Calcific Annuli	"Low" Radial Force	
Low EF (<30%)	Diverse Methods of Anchoring	

Why is TMVR Developing More Slowly than Predicted? Technical and Clinical Root Causes

Clinical/Anatomical Market Targets	Resulting Technological + Design Attributes	TODAY's Challenges (Technical and Clinical)
Large Ventricles	Large Catheter Sizes = TA Route	Large Bore Transseptal
Large Annular Sizes	High Valve Profiles (Depth into LV)	LVOT Obstruction
Non-Calcific Annuli	"Low" Radial Force	Mitral Annular Calcification
Low EF (<30%)	Diverse Methods of Anchoring	Myocardial Interaction in HF patients


Potential Valve-Related Solutions

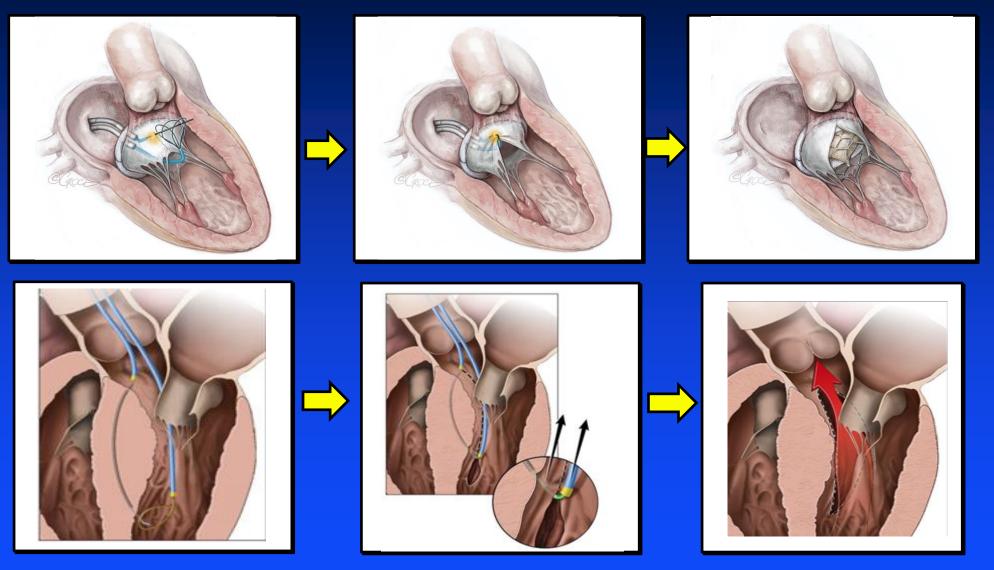
Low-profile valves Minimize footprint in LVOT

Leaflet-Dependent Fixation Retract Anterior Mitral Leaflet

Atrial Valve No protrusion into LVOT

M3 Platform

4C AltaValve


LVOT Obstruction: Potential Procedure-Related Solutions

LAMPOON Splitting Anterior Mitral Leaflet

SESAME:

Catheter-Based

Septal Myotomy

Figures courtesy of Jaffar Khan, MD

Mitral Valve Therapies: Predictions for the Field

- Given the complexity of the mitral valve complex and the multiple mechanisms of MR, catheter-based approaches to mitral valve therapies will continue to lag behind approaches to the aortic (and tricuspid) valves
- Based on its unparalleled safety and widespread adoption, TEER will
 remain the mainstay of therapy for the foreseeable future → may extend
 to intermediate-risk patients with specific anatomic features
- TMVR will initially be approved (and used) almost exclusively for MAC, where surgical outcomes are poor
- True catheter-based "solutions" to MR will require a multi-pronged approach including technology, technique, and combination approaches ("toolbox" approach)