

Fractional Flow Reserve-Guided PCI Compared with Coronary Bypass Surgery:

The True Message of the FAME 3 Trial

William F. Fearon, MD

Professor of Medicine

Director of Interventional Cardiology

Stanford University School of Medicine

Chief, Cardiology Section

VA Palo Alto Health Care System

Disclosures

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

Grant/Research Support

Consulting Fees/Stock Options

Major Stock Shareholder/Equity

Royalty Income

Ownership/Founder

Intellectual Property Rights

Other Financial Benefit

Company

Abbott, Boston Scientific, Medtronic NIH R61 HL139929-01A1 (PI)

CathWorks, Siemens, HeartFlow

Outline

- Review the main results of the FAME 3 Trial
- Message 1: Improved outcomes
- Message 2: FFR and disease complexity
- Message 3: Endpoint definitions
- Message 4: Quality of life

FAME 3: Study Design

Investigator-initiated, multicenter, randomized, controlled study

All Comers with 3V-CAD (not involving Left Main) amenable to PCI and CABG by Heart Team at 48 centers in Europe, North America, Australia and Asia

FFR-Guided PCI

stent all lesions with FFR ≤0.80 (N=750)

CABG

based on coronary angiogram (N=750)

Primary Endpoint:

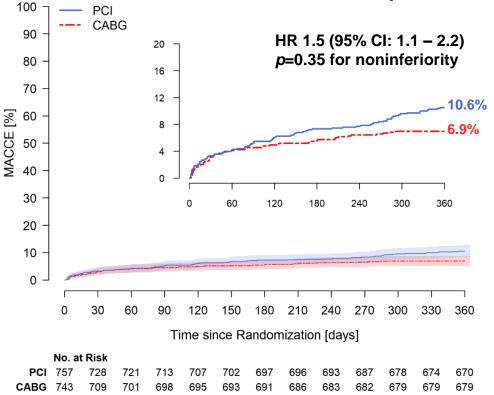
■ MACCE at 1 Year: all-cause death, MI, stroke or repeat revascularization

Statistical Analysis:

Noninferiority margin set at a hazard ratio of 1.65

Baseline Characteristics

Variable	PCI (n=757)	CABG (n=743)
Age	65 ± 8 years	65 ± 8 years
Male	81%	83%
Caucasian	94%	92%
HTN	71%	75%
Dyslipidemia	69%	72%
Current Tobacco Use	19%	18%
Diabetes	28%	29%
Insulin dependent	7%	8%
ACS presentation	40%	39%
EF≤50%	18%	18%
Prior PCI	13%	14%


Procedural Characteristics

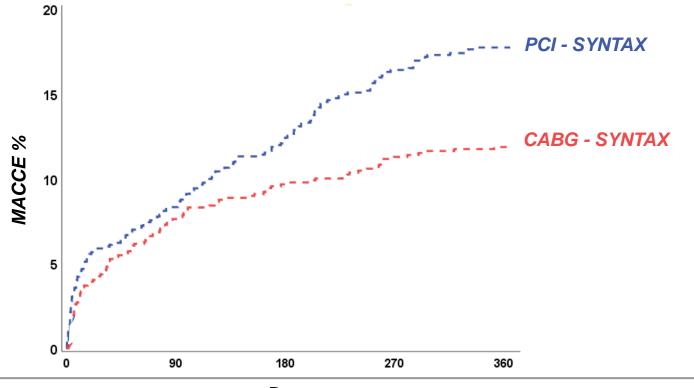
Variable	PCI (n=757)	CABG (n=743)
Time to procedure	4 days	13 days
Procedure duration	87 min	197 min
Length of hospital stay	3 days	11 days
Number of lesions	4.3	4.2
≥1 Chronic occlusion	21%	23%
≥1 Bifurcation lesion	69%	66%
SYNTAX Score	26	26
Low (0-22)	32%	35%
Intermediate (23-32)	50%	48%
High (>33)	18%	17%

Primary Endpoint

MACCE (Death, MI, stroke or repeat revascularization) at 1 Year

Message #1

 Compared with historical data, outcomes with both FFRguided PCI with current generation DES and CABG have improved significantly.


FAME 3 and SYNTAX Trials

Variable	FAME 3	SYNTAX
Age	65 years	65 years
Male	82%	78%
Diabetes	29%	25%
Insulin Dependent	8%	10%
Hypertension	73%	67%
Dyslipidemia	70%	78%
Current Tobacco Use	19%	20%
ACS presentation	39%	29%
EF≤50%	18%	20%
Prior PCI	14%	0%
Number of Lesions	4.3	4.4
SYNTAX Score	26	29

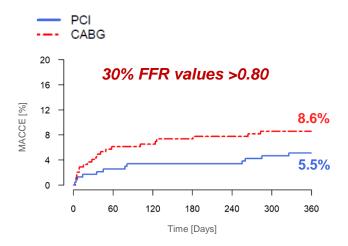
FAME 3 and SYNTAX Trials

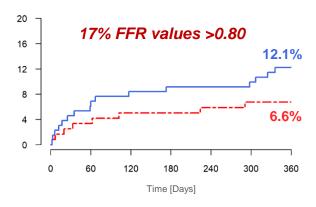
MACCE (Death, MI, Stroke, or Repeat Revascularization) at 1 Year

Message #2

For any test (e.g., FFR) to have a positive impact on outcomes, it needs to be used in a population and/or in a manner where it will impact decision-making.

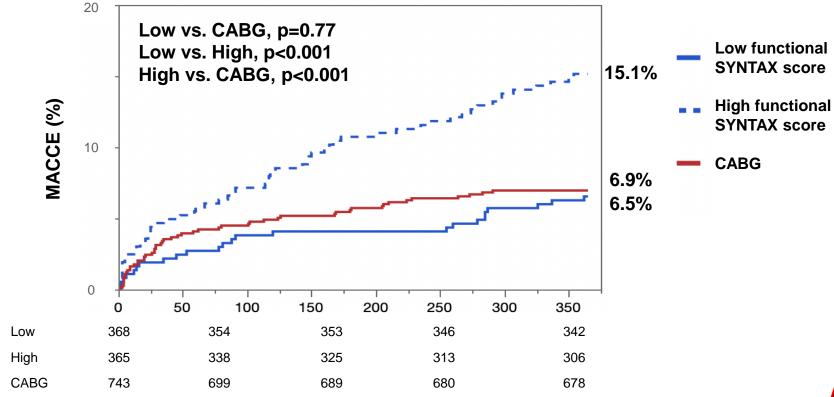
FAME 3 and FFR


- FFR could only be measured in 82% of lesions, meaning in about 20% of lesions FFR played no role in decision-making.
- In those lesions where FFR was measured, FFR was negative in only 24%.
- For reference, in studies of intermediate lesions, FFR is typically negative in 60-70% of lesions.
- A main benefit of FFR is deferring unnecessary PCI when FFR is negative.


MACCE According to SYNTAX Score...

...and according to percentage of lesions with FFR values >0.80

HIGH (>32) SYNTAX SCORE



Reclassification with FFR Information

MACCE According to Functional SYNTAX Score

Outcome of Deferred Lesions at 1 Year

- Among all deferred lesions (n=597):
 - MI rate = 0.5% (n=3)
 - Revascularization rate = 3.2% (n=19)

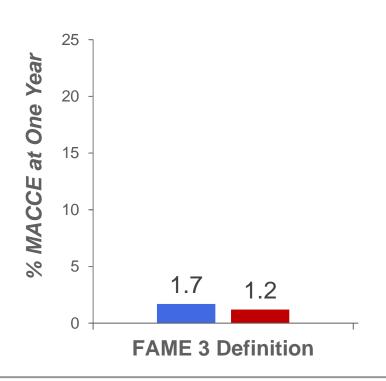
Message #3

Not all "hard" endpoints are really that hard!

Definition of Myocardial Infarction

Procedural (FAME 3)

- Defined in the same way for CABG and PCI
- Troponin > 10x URL (or an increase of > 20%, if the baseline values are elevated) AND at least one of the following:
 - New pathologic Q waves or new LBBB
 - Angiographic documented new graft or new major native coronary occlusion
 - Imaging demonstration of new loss of viable myocardium or new regional wall motion abnormality

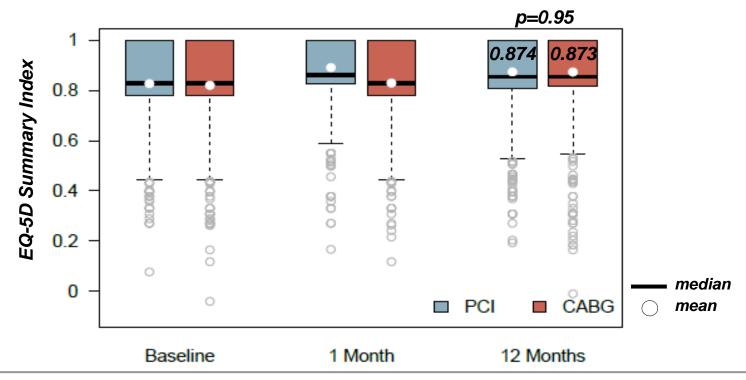

Definition of Myocardial Infarction

Procedural (SCAI)

- CK-MB 10x URL (or 70x troponin) OR
- CK-MB >5x URL (35x troponin ULN) PLUS
 - New pathologic Q-waves in 2 contiguous leads or new persistent LBBB

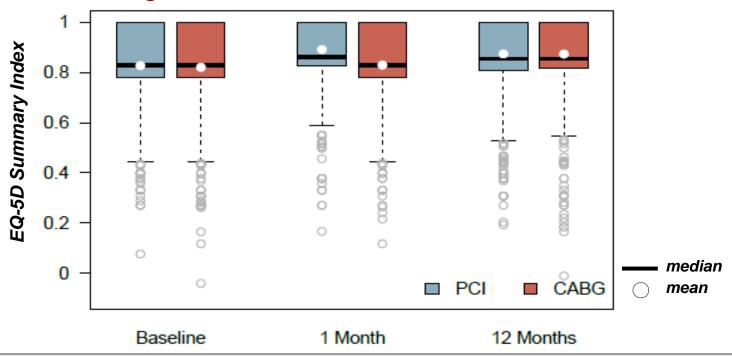
Procedural MI Definitions

- PCI (n=757)
- CABG (n=743)

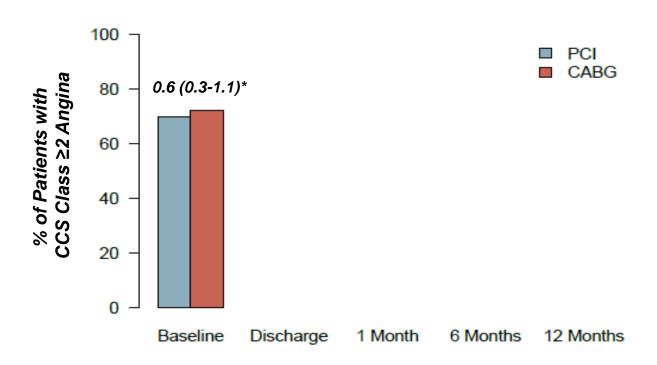

¹ Moussa ID, et al. J Am Coll Cardiol 2013;62:1563-70.

Message #4

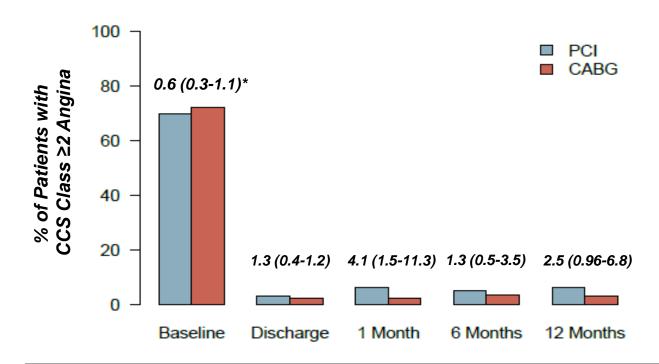
Because the clinical event rate is similar between FFR-guided PCI and CABG (only 3.7% absolute difference in MACCE and no difference in death and stroke) other endpoints, like quality of life and angina relief become even more important to both the patient and the physician.



Primary Endpoint: EQ-5D Summary Score at 1 year



P<0.001 for the trajectory of improvement in EQ-5D Summary Index favoring FFR-Guided PCI



% of Patients with CCS Class ≥ 2 Angina at Each Time Point

% of Patients with CCS Class ≥ 2 Angina at Each Time Point

Conclusion

- FAME 3 has a number of true messages:
 - FFR-guided PCI did not meet the criterion for noninferiority to CABG
 - Outcomes with both FFR-guided PCI and CABG are significantly improved when compared with historical data.
 - In less complex disease, where measuring FFR can actually have an impact, FFRguided PCI performed very favorably in comparison with CABG. The Functional SYNTAX score identifies patients who benefit most from PCI.
 - Endpoint definition (particularly procedural MI) clearly affects one's interpretation of FAME 3.
 - Quality of life at one year is similar after FFR-guided PCI compared with CABG; overall
 quality of life during the first year is better after PCI; and significant angina is infrequent
 and similar in both arms at one year.

What is next for FAME 3?

FAME 3: Three Year Follow-up

Frederik Zimmermann, MD, PhD

