
TCT Asia Pacific 2022

DON'T MESS UP: Critics on FAME 3, FLOWER-MI, FUTURE, RIPCORD 2

Seoul, May 7th, 2023

Nico H. J. Pijls, MD, PhD Catharina Hospital, Eindhoven, The Netherlands

Potential conflicts of interest

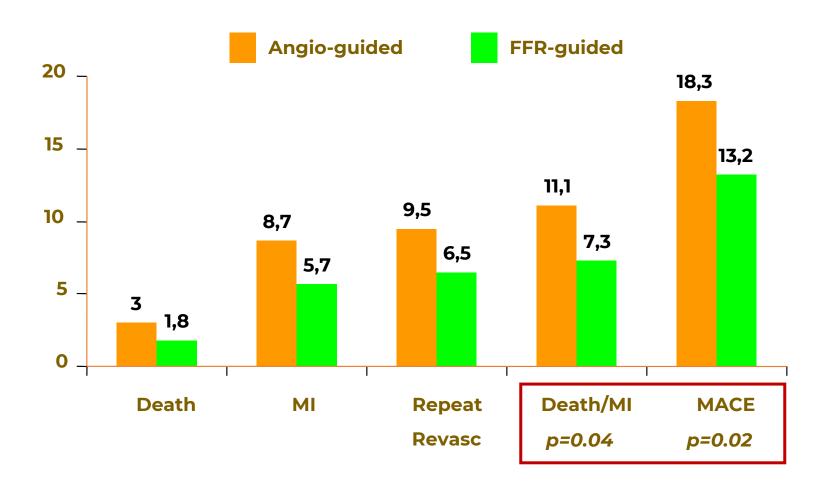
I have the following potential conflicts of interest to report:

- Research contracts : *Abbott*
- Consulting: *Abbott, Heartflow (SAB)*
- Stockholder of a healthcare company: *Philips, GE, ASML, Heartflow*
- Other(s): patents pending in the fields of coronary microcirculation and aortic valve stenosis

Thomas Kuhn, 1965, "The Structure of Scientific Revolutions"

"Philosophers of science have repeatedly demonstrated that more than one theoretical model can always be placed upon any given set of scientific data" Study to discuss: **"THE STUDY"**

Comparable Study to which the respective study is compared: "COMPARATOR"


FFR – guided vs Angio- guided PCI in Multivessel Disease:

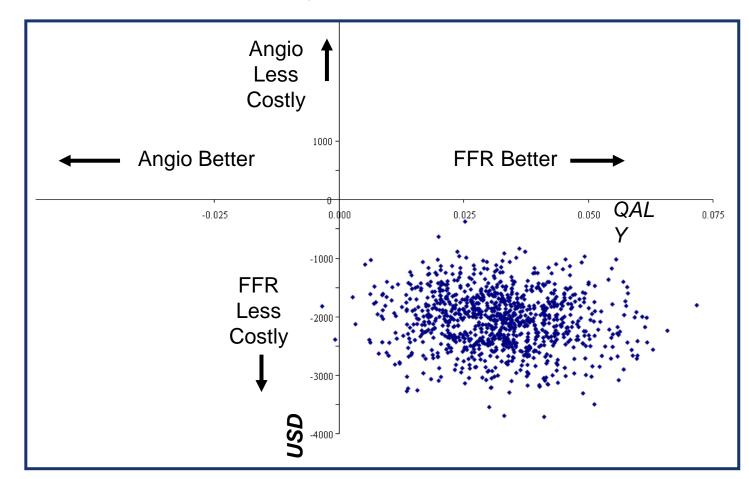
FUTURE VS FAME

	FAME-study (N= 1005) (Tonino, NEJM 2009:360:213-224)	FUTURE study (N= 927) Rioufol, JACC 2021;78: 1875-85)
Hypothesis	FFR-guided PCI in MVD is superior to standard, angio-guided PCI	FFR-guided PCI in MVD is superior to standard, angio-guided PCI
Primary Endpoint	Death, MI, revascularization at 1,2, 5 y	Idem + "unplanned revascularization"
Design	RCT in all-comers (3 pat/center/month)	RCT "all-comers" but < 1 pat/center/month
Population	Moderate/high risk: 4 stenoses, 3 stents	moderate risk: 3 stenoses, 2 stents per pat.
Strong points	91% DES	95% DES
Weak points	none	96 % staged procedures , of which quite a number after 30 days and counted as event !
		poor adherence to study protocol: <i>FFR-value often neglected</i> (2.2 vs 2.1 stents per patient !)
Outcome	FFR-guided PCI superior to angio-guided PCI, also for all individual endpoints	equipoise for FFR-guidance vs standard
Applicability for average population	High: reduction of all adverse events with 30% at 1, 2, and 5 years	limited because of serious limitations in design and performance

FFR-guided vs Angio-guided PCI in Multivessel Disease: FAME study (N=1005) : one-year outcomes

Tonino ,NEJM 2009; Pijls, JACC 2011, Zimmermann, EHJ 2015

FFR – Guidance for Quality Of Life and Costs


• **RIPCORD-2** *Stables, Circulation 2022*

versus

- **FAME 1 2 3** 5 papers in NEJM 2009-2021 (Tonino, De Bruyne, Fearon)
- IRIS Ahn, Circulation 2017

	FAME-study (N= 1000) (Tonino, NEJM 2009:360:213-224)	RIPCORD-2 study (N= 1100) (<i>Stables, Circulation 2022;146:687-698</i>)
Hypothesis	FFR-guided PCI in MVD is superior to standard, angio-guided PCI for outcome, but also for QOL and Costs	Systematic use of FFR during angiography, is superior to regular angio with respect to QOL & costs
Primary Endpoint	Death, MI, revascularization at 1,2, 5 y. <i>Secondary endpoint</i> : QOL & costs at 1 year	Quality Of Life (QOL) and costs at 1year
Design	RCT	RCT
Population	<i>Moderate/high risk</i> : 4 stenoses, 3 stents 66 % of all lesions FFR-positive	<i>very low risk, mainly diagnostic population</i> . only 29% of lesions FFR-positive
Strong points	strong design	strong design
Weak points	none	<i>many (almost) normal arteries:</i> If just one artery was >30%, all arteries were measured
Outcome	FFR-guided PCI superior to angio-guided PCI also for QOL and Costs	equipoise for FFR-guidance vs standard angio with respect to QOL and costs
Applicability for average population	high in patients with MVD and <i>lesions 30-90%</i> <i>IRIS Registry: similar data (Ahn et al, Circ 2017)</i>	high: <i>measure FFR mainly in vessels 30-90 %</i>

1 Year Economic Evaluation in FAME study: The FAME study is one of those rare examples in today's Medicine, where a new method is not only better, but also more cost-effective!

Bootstrap Simulation

COMPLETE REVASCULARISATION IN STEMI, INCLUDING NON-CULPRITS:

FFR-Guidance vs Angio-Guidance

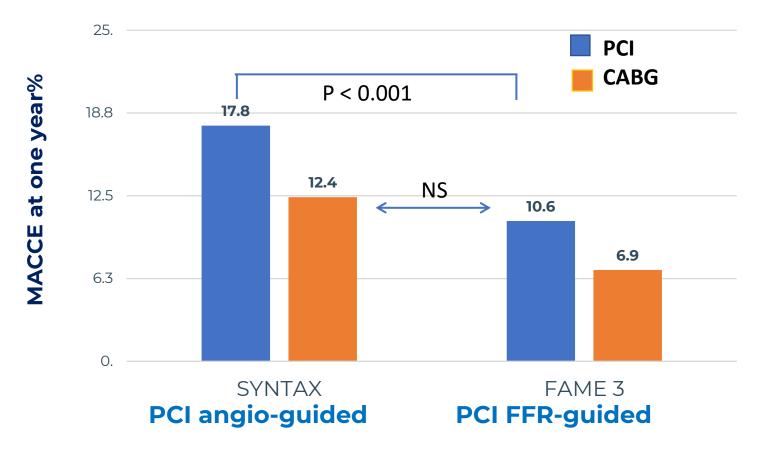
• FRAME Registry Hahn, ESC 2022

	COMPARE-ACUTE study /DANAMI study/FRAME study (Smit: NEJM 2017, Engstrom, Lancet 2017	FLOWER-MI study (N=1171) Puymirat, NEJM 2021;384:297-307
Hypothesis	In PPCI for STEMI, FFR-guided complete revasc of non-culprits is superior to angio-guided procedure	In PPCI for STEMI, FFR-guided complete revasc of non-culprits is superior to angio-guided procedure
Primary Endpoint	Death, MI, urgent revasc at 1 year	Death, MI, urgent revasc at 1 year
Design	RCT in Acute STEMI (Compare & DANAMI)	RCT in acute STEMI
Population	STEMI + at least one non-culprit lesion >50%	STEMI + at least one non-culprit lesion >50%
Strong points	Excellent design, excellent adherence Randomization before anatomy was known	Excellent design, excellent adherence
Weak points		 randomization áfter anatomy was known In 16 % of all lesions → PCI without physiol
Outcome	Immediate FFR-guided PCI of non-culprits superior to angio-guidance	equipoise for FFR-guidance vs angio-guidance
Applicability for average	Both studies favour complete revascularization in STEMI but Compare-Acute, DANAMI, and FRAME	
population	favour use of FFR , whereas FLOWER-MI does not	

PCI vs CABG in 3-vessel disease

• SYNTAX Serruys, NEJM 2009

VS


• FAME 3 Fearon, NEJM 2021

	SYNTAX study (N= 1800) (Serruys, NEJM 2009)	FAME-3 study (N= 1505) (Fearon NEJM 2022)
Hypothesis	Revascularization with DES in 3-VD is Non-inferior to bypass surgery	<i>FFR-guided</i> Revascularization with DES in 3-VD is non-inferior to bypass surgery
Primary Endpoint	Death, MI, revascularization at 1,2, 5 y	Death, MI, revascularization at 1,2, 5 y
Design	RCT in 3-VD <i>ánd in LM disease</i>	RCT in 3-VD
Population	high risk	high risk
Strong points	all-comers, 91% DES	all-comers, 91% DES
Weak points	none	none
Outcome	CABG remains superior in high SYNTAX-score. PCI equivalent to CABG in low/medium SYNTAX score	CABG remains superior in high SYNTAX-score. PCI equivalent to CABG in low/medium SYNTAX score
Applicability for average population	high	highly Reduced mortality in both PCI ánd CABG groups

SYNTAX and FAME-3 studies (optimal revascularisation in 3-VD)

MACCE at 1 year

(Death, MI, stroke, or repeat revascularization)

Thomas Kuhn, 1965, "The Structure of Scientific Revolutions"

"Philosophers of science have repeatedly demonstrated that more than one theoretical model can always be placed upon any given set of scientific data"

.....but some data sets are stronger than others !!

Non-inferiority of NHPR's was investigated in 2 RCT'S: DEFINE-FLAIR study and SWEDE-HEART:

- low-risk populations
- single vessel disease in 58% of patients
- no PCI at all-in 45% of patients
- average number of stents 0.7
- Studies claimed to be "physiology-guided" but <u>first</u> an angiographic assessment was made and <u>only</u> if visual lesion severity was < 70%, iFR or FFR was measured

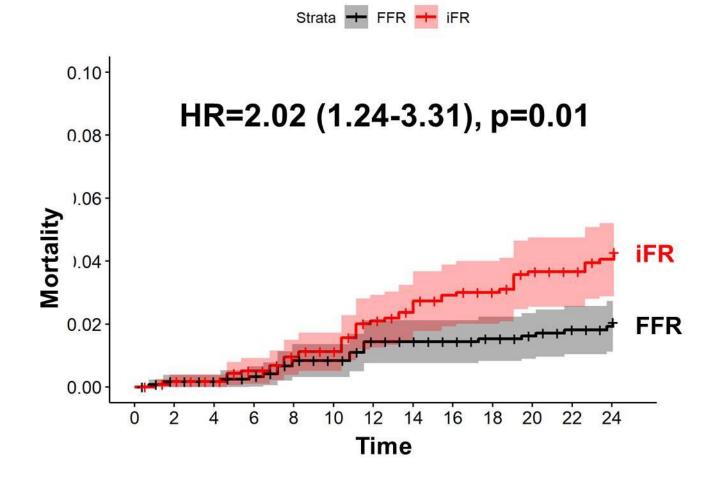
Almost 50% of all stents were placed without physiologic measurement, just by eye-balling

Most false-negative iFR excluded from analysis by design of the study

<u>Functional Lesion Assessment of</u> <u>Intermediate stenosis to guide</u> <u>Revascularization</u>

iFR vs FFR for guiding coronary revascularization – DEFINE-FLAIR (2 year results)

Justin E Davies, MD, PhD on behalf of the DEFINE-FLAIR investigators


Hammersmith Hospital,

Imperial College London

Imperial College London

San Francisco, TCT 2019

DEFINE_FLAIR Significantly Higher Two Year Mortality with iFR-Guided PCI

Adapted from Davies, et al. TCT 2019 by Takuya Mizukami, MD, PhD

FAME study Functional Class at 1 Year

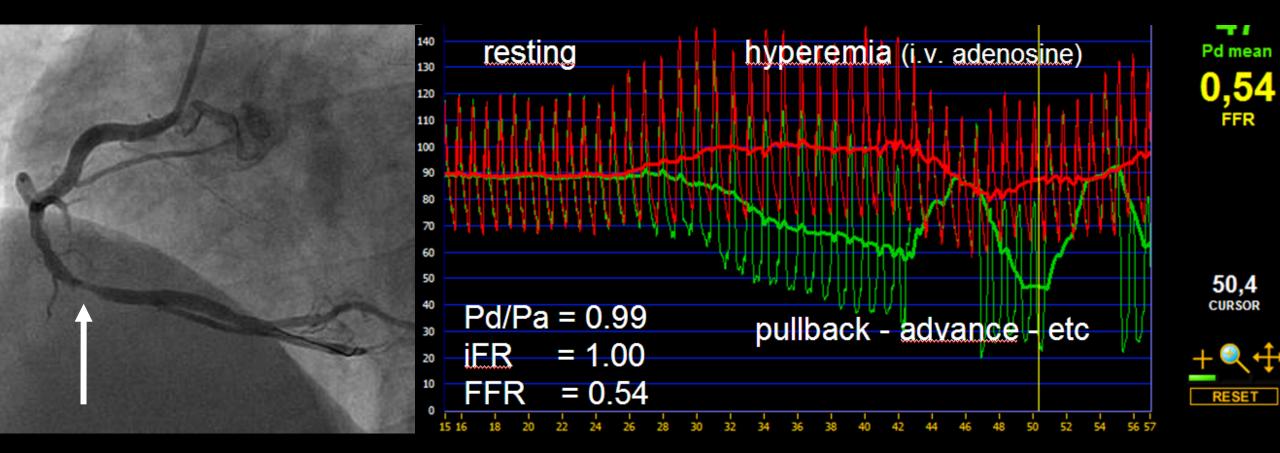
	ANGIO-group N=496	FFR-group N=509	P-value
Patients without Event and free from Angina	326 (68)	360 (73)	0.07

HYPEREMIA (FFR) vs NHPR (iFR, dPR, RFR, etc)

DEFINE-FLAIRDavies, NEJM 2017**SWEDE-HEART**Gotberg, NEJM 2017

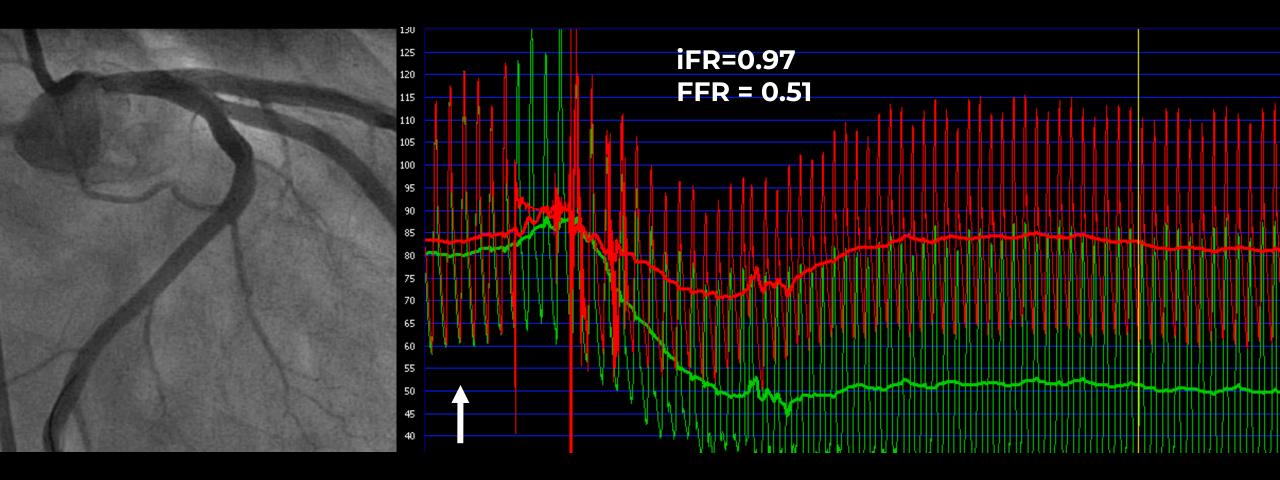
VS

FAMETonino, NEJM 2009VERIFYBerry, JACC 2012


	FAME-study (N= 1000) (Tonino, NEJM 2009:360:213-224)	DEFINE FLAIR (N= 2492) Davis, NEJM 2017, March 17th
Hypothesis	FFR-guided PCI in MVD is superior to standard, angio-guided PCI	Instantaneous Flow Ratio (iFR) or NHPR are non- inferior to FFR with respect to outcome
Primary Endpoint	Death, MI, revascularization at 1,2, 5 y	Death, MI, revascularization at 1,2, 5 y
Design	RCT in all-comers	RCT "all-comers"
Population	Moderate/high risk: 4 stenoses, 3 stents	low risk population: 0,7 stent per patient - 56% Single vessel disease - no PCI at all in 45% of all patients
Strong points	all-comers, 91% DES	very large population
Weak points		 50% of stented lesions in iFR/FFR group had no physiologic measurement performed exclusion of many false-negatives by design
Outcome	FFR-guided PCI superior to angio-guided PCI, also for all individual endpoints	Non-inferiority for iFR guidance vs FFR guidance at 1 year <mark>Significant higher mortality in IFR group at 2 years</mark>
Applicability for average	High: reduction of all adverse events	<i>Caveat</i> . Mistrust negative iFR/ NHPR in proximal

population

with 30% at 1, 2 , and 5 years foca


focal lesions and in high-risk patients

Young male, large RCA, focal lesion 70%

Middle-aged woman, short 50% LM stenosis

hyperemia (i.v. adenosine)

Rest

2-year-mortality with iFR- guidance in low-risk DEFINE-FLAIR population, was twice as high as in FFR group (p<0.01) and equal to angio-guided group in complex FAME population

2 years mortality 5 P < 0.01 **iF**R ANGIO 4 3 FFR FFR 2 1 0 **Define Flair** FAME

adapted from Davies J, TCT 2019; Van Nunen, Lancet 2015;386;1853-1860