

Optimizing the LCx Ostium: Tips and Tricks

Andrejs Erglis, MD, PhD Pauls Stradins Clinical University Hospital,

University of Latvia

Riga, LATVIA

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria

• Stock shareholder:

Company

- Abbott Vascular, Boston Scientific, HeartFlow, Inc, MVRx
- Amgen, Abbott Laboratories, Astra-Zeneca, Bayer, Boehringer Ingelheim, GlaxoSmithKline, Berlin Chemie / Menarini, Merck, Pfizer, Roche, Sandoz, Sanofi, Servier Laboratories, Siemens laboratories, Abbott Vascular, Boston Scientific, Biotronik, Biosensors, Cordis,
- CERC

Q: The weakest link in the left main stenting? A: LCX ostium

Data from the Asan Medical Center, Seoul, Korea

Burzotta F, et al. The 13th consensus document from the European Bifurcation Club. EuroIntervention. 2018 May 20;14(1):112-120. doi:

Kang SJ, et al. Circ Cardiovasc Interv. 2011 Dec 1;4(6):562-9.

DKCRUSH-V Randomized Trial

The primary endpoint was the 1-year composite rate of target lesion failure (TLF): cardiac death, target vessel MI, or clinically driven TLR 482 patients from 26 centers in 5 countries with true distal LM bifurcation lesions (Medina 1,1,1 or 0,1,1) randomized to provisional stenting (n = 242) or DK crush stenting (n = 240).

The rates of in-stent restenosis (ISR) in the main vessel (MV) at 13-month angiographic follow-up were comparable with DK crush stent and provisional stenting (PS). The rate of ISR at the ostium of side branch (SB) was 12.0% with PS versus 5.0% with DK crush (p = 0.09). LM = left main.

Chen SL et al. J Am Coll Cardiol. 2017 Nov 28;70(21):2605-2617.

C362-C376

Lassen JF, et al. EuroIntervention. 2022 Aug 19;18(6):457-470.

Treatment of coronary bifurcation lesions, part I: implanting the first stent in the provisional pathway. The 16th expert consensus document of the European Bifurcation Club

Remo Albiero^{1*}, MD; Francesco Burzotta², MD, PhD; Jens Flensted Lassen³, MD, PhD; Thierry Lefèvre⁴, MD; Adrian P. Banning⁵, MD, PhD; Yiannis S. Chatzizisis⁶, MD, PhD; Thomas W. Johnson⁷, MD; Miroslaw Ferenc⁸, MD, PhD; Manuel Pan⁹, MD, PhD; Olivier Darremont¹⁰, MD; David Hildick-Smith¹¹, MD; Alaide Chieffo¹², MD; Yves Louvard⁴, MD; Goran Stankovic¹³, MD

Treatment of coronary bifurcation lesions, part II: implanting two stents. The 16th expert consensus document of the European Bifurcation Club

Jens Flensted Lassen^{1*}, MD, PhD; Remo Albiero², MD; Thomas W. Johnson³, MD; Francesco Burzotta⁴, MD, PhD; Thierry Lefèvre⁵, MD; Tinen L. Iles⁶, PhD; Manuel Pan⁷, MD, PhD; Adrian P. Banning⁸, MD, PhD; Yiannis S. Chatzizisis⁹, MD, PhD; Miroslaw Ferenc¹⁰, MD, PhD; Vladimir Dzavik¹¹, MD; Dejan Milasinovic¹², MD; Olivier Darremont¹³, MD; David Hildick-Smith¹⁴, MD; Yves Louvard⁵, MD; Goran Stankovic¹², MD, PhD

3-stage approach (ABC) to deployment of the first stent:

- Stage A: wiring of the MV and SB,
- Stage B: MV and SB preparation
- Stage C: stent implantation and optimisation.

How to improve outcome in LCX ostium?

Success depends upon previous preparation, and without such preparation there is sure to be failure. internetpoem.com Confucius

Stage A – MV and SB wiring Guidewire selection, shaping and wiring techniques plus operator's experience and creativity

Microcatheter-facilitated technique Balloon backstop technique and others

Burzotta F, et al. EuroIntervention. 2010 Dec;6 Suppl J:J72-80.

Stage B – MV and SB preparation

Imaging:

- True lumen/vessel measurements, lesion length
- Plaque burden, morphology and distribution
- Bifurcation angle

• Balloon/stent sizing

Mandatory preparation of LCX:

Severe stenosis, calcified, angulated lesion

Stage C – Stent implantation and optimisation (PS strategy)

The 16th expert consensus document of the European Bifurcation Club, part I

Albiero R, et al. EuroIntervention. 2022 Aug 5;18(5):e362-e376.

The 15th expert consensus document of the European Bifurcation Club

Burzotta F, et al. EuroIntervention. 2021 Mar 19;16(16):1307-1317.

The 16th expert consensus document of the European Bifurcation Club, part I

Albiero R, et al. EuroIntervention. 2022 Aug 5;18(5):e362-e376.

Impact of guidewire recrossing point into stent jailed side branch

N=105, off-line 3D-OCT at the corelab

Link-free type: no stent link at the carina

Link-connecting type: a stent link connecting to the carina

Incidence of incomplete stent apposition in LCX ostium

Okamura T, et al. EuroIntervention. 2018 Feb 2;13(15):e1785-e1793.

Stage C – Stent implantation and optimisation Postintervention imaging and postdilatation if needed

Pitfalls and troubleshooting: LCX occlusion

- POT before SB rewiring attempt;
- Rewiring with a 3rd wire preferably assisted by a dual lumen microcatheter or another single lumen angulated or with deflectable tip microcatheter;
- Dedicated CTO wires
- Low-profile balloon on the jail wire and dilate the SB (rescue balloon jailing technique)
- If a low-profile balloon cannot cross, try to pass a Corsair Pro (Asahi Intecc) microcatheter and, if successful, retry the low-profile balloon

Intraluminal rewiring of the SB/aSB (assisted by a dual lumen microcatheter)

Pitfalls and troubleshooting: Difficulty removing the jailed wire

Entraped guidewire: advance a balloon (inflate if needed) or microcatheter over it as far distally as possible before retracting it

Fracture of the jailed wire:

- Solutions: from simply leaving the segment of wire in place to surgery for removal, but first trying to remove the wire percutaneously using: a snare loop to remove a distal fractured wire especially if it is floating in the aorta or the tangling technique with the help of 2-3 workhorse wires acting as rescue wires.
- Prevention:
 - Polymer-coated wires seemed to be more resistant to retrieval damage than non-polymer-coated wires
 - Optimal plaque modification with NC balloon dilatation, cutting/ scoring balloons or rotational/ orbital atherectomy in calcified lesions
 - Short length of the jailed wire
 - Lower pressures during the MV stent deployment in calcific bifurcations
 - Avoid jailing the wire in multiple overlapping stents
 - Avoid oversized stent and/or high-pressure post-dilatation after stenting

The 16th expert consensus document of the European Bifurcation Club, part I

Albiero R, et al. EuroIntervention. 2022 Aug 5;18(5):e362-e376.

Stage C – Stent implantation and optimisation (two-stent strategy, bail-out or upfront)

The 16th expert consensus document of the European Bifurcation Club, part II Lassen JF, et al. EuroIntervention. 2022 Aug 19;18(6):457-470. In the presence of significant SB flow limitation or poor angiographic results in an SB supplying a significant myocardial territory, subsequent SB stenting can be performed (T, T and protrusion [TAP] or culotte), with systematic final kissing balloon inflation (KBI) and a finalising POT

New personalized treatment for the LM lesions (Synergy DES + BVS)

- Pilot study (2012-2015) Pilot, prospective, consecutive, one center registry analyzing feasibility of IVUS-guided and OCT-optimized two stent technique (Mini-crush or T-stent strategy) using everolimus-eluting platinum chromium coronary stent with bioabsorbable polymer coating (Synergy) in LM/LAD and bioresorbable vascular scaffold (Abbsorb) in Cx for the treatment of distal ULMCA true bifurcation stenosis
- Pilot II (2021, ongoing) IVUS-guided and OCT-optimized two stent technique using: DES in LM/LAD and resorbable magnesium scaffold (Magmaris) in Cx for the treatment of distal ULMCA true bifurcation stenosis

5-year cardiovascular mortality in Pilot study = 0%	Cumulative
The Party Party IY AY	Death, n (%)
Letter An I I I I I I I I I I I I I I I I I I	Cardiovascu
	Myocardial
THE I CE COM AND	Stroke, n (%
hhl ic.	TLR, n (%)
FFR 0.53 Pd/Pa 0.53 Pa:Pa 107.145 Pd:Pd 05.145	LM-LAD L LCX BVS r
	LCX BVS s
FFR 0.87	Stent throm
Pd/Pa 0.87 Pa:iPa 61:51 Pd:ipd 53:44	MACE (deat
	stroke, ILR)

Cumulative events at 4 years	All patients (n=46)
Death, n (%)	0 (0.0)
Cardiovascular death, n (%)	0 (0.0)
Myocardial infarction, n (%)	1 (2.2)
Stroke, n (%)	0 (0.0)
TLR, n (%) LM-LAD DES restenosis LCX BVS restenosis LCX BVS stent thrombosis	9 (19.6) 1 (2.2) 7 (15.2) 1 (2.2)
Stent thrombosis	1 (2.2)
MACE (death, myocardial infarction, stroke, TLR)	9 (19.6)

Predictors of MACE at 4 years

MACE (death, myocardial infarction, stroke, TLR)

Variable	MACE +	MACE -	Hazard ratio (95% CI)	p value
Total cholesterol	4.8 ± 1.2	3.9 ± 0.8	2.839 (1.169-6.897)	0.021
Low density lipoprotein	3.0 ± 1.0	2.1 ± 0.7	3.918 (1.396-10.996)	0.009
Side branch plaque modification with cutting balloon	4 (44.4%)	32 (86.5%)	0.125 (0.025-0.630)	0.012
Absorb scaffold diameter \leq 2.5 mm at the LCX ostium	4 (44.4%)	5 (13.5%)	5.120 (1.016-25.813)	0.048
No post intervention IVUS MB	4 (44.4%)	2 (5.4%)	14.000 (2.014-97.311)	0.008
No post intervention IVUS SB	4 (44.4%)	2 (5.4%)	14.000 (2.014-97.311)	0.009

MACE was not predicted by:

Clinical: Age, Gender, Hypertension, Dyslipidemia, Diabetes, Smoking, Family history, Prior MI, Prior PCI, HF, PAD, EF Angiographic: Syntax score

Procedural: Pre-IVUS, Pre-OCT, CB in the MB, CB MB diameter, CB SB diameter, Stenting technique, LM DES diameter, Absorb diameter, LM DES length (p=0.068), Absorb length, FKPD, Post-OCT

Univariate logistic regression was used to determine the predictors of MACE.

Erglis A, et al. J Interv Cardiol. 2022 Oct 31;2022:7934868.