When Should We Consider MCS Before PCI in STEMI

Ziad A Ali MD DPhil

St Francis Hospital & Heart Center Cardiovascular Research Foundation, New York, USA zali@crf.org Sollow me @ziadalinyc

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship	Company
Grant/Research Support (<i>Institutional)</i>	NIH/NHLBI, Abbott, Philips, Boston Scientific, Abiomed, Opsens, Acist Medical, Medtronic Cardiovascular Systems Inc
Consulting Fees/Honoraria	Amgen, Astra Zeneca, Boston Scientific
Equity	Shockwave Medical

Larger Infarcts Drive Mortality + HF

For every 5% increase in myocardial infarct size, 1-year all-cause mortality increases by 19% & HF hospitalization by 20%

So how can we reduce infarct size?

Time Delay, Infarct Size, and Microvascular Obstruction After Primary Percutaneous Coronary Intervention for ST-Segment–Elevation Myocardial Infarction

Björn Redfors, MD, PhD*; Reza Mohebi[®], MD*; Gennaro Giustino, MD; Shmuel Chen[®], MD, PhD; Harry P. Selker, MD, MSPH; Holger Thiele[®], MD; Manesh R. Patel, MD; James E. Udelson, MD; E. Magnus Ohman, MD; Ingo Eitel[®], MD; Christopher B. Granger[®], MD; Akiko Maehara, MD; Ziad A. Ali[®], MD, DPhil; Ori Ben-Yehuda, MD; Gregg W. Stone[®], MD

Catholic Health

St. Francis Hospital & Heart Center®

Door-to-balloon time						
>90 min vs ≤45 min	1.01 (0.61-1.67)	0.96	1.07 (0.60-1.92)	0.82	0.67 (0.31-1.46)	0.32
45~90 min vs ≤45 min	1.03 (0.70-1.50)	0.90	0.91 (0.57-1.46)	0.71	1.03 (0.61-1.74)	0.91
Per 10-min increase	1.02 (0.98-1.06)	0.28	1.02 (0.98-1.07)	0.23	0.99 (0.93-1.05)	0.78

Values are hazard ratio (95% CI). The multivariable models were adjusted for the following covariate set: Age, sex, hypertension, hyperlipidemia, current smoking, LAD vs non-LAD infarct artery, and prior myocardial infarction. LAD indicates left anterior descending.

Circ Cardiovasc Interv 2021;14(2):e009879

What about unloading?

UNLOADING – THE SCIENCE

Catholic Health

St. Francis Hospital & Heart Center®

- Decreased myocardial oxygen consumption
- Activation of cardioprotective signaling
- Increased cardiac microvascular perfusion into infarct zone
- Hemodynamic stabilization through reperfusion-dependent arrhythmia
- Bridge through reperfusion-induced myocardial stunning
- Reduced acute infarct size and subsequent scar size

CHOICES

Y Catholic Health St. Fr ሕዝፅዌ ዛሪቄዎቶ አንድ የተፈልሞ ሮሞ የሚሞል 2020;76(6):684-699.

Is there evidence for unloading?

But that's just basic science...

LV Unloading has Data to Support it?

Catholic Health

St. Francis Hospital & Heart Center®

		LVAD		0	ontrol		Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Achour-1 2005	34.69	4.62	8	54.58	9.23	8	2.7%	-2.58 [-4.00, -1.16]	
Achour-2 2005	51.51	14.04	8	54.58	9.23	8	3.0%	-0.24 [-1.23, 0.74]	
Allen 1986	48	13.42	5	44	15	9	2.9%	0.26 [-0.84, 1.36]	
Axelrod-1 1987	18.1	19.84	6	47.6	17.67	12	2.9%	-1.53 [-2.66, -0.40]	
Axelrod-2 1987	17.5	15.3	9	47.6	17.67	12	3.0%	-1.73 [-2.77, -0.69]	
Briceno-1 2019	34	6	4	52	15	6	2.6%	-1.31 [-2.77, 0.15]	
Briceno-2 2019	66	13	5	52	15	6	2.8%	0.90 [-0.37, 2.18]	
Esposito 2018	33.3	5	4	62.2	1.7	4	0.8%	-6.73 [-11.56, -1.90] +	
Franco 1984	59.8	11.27	6	66.4	15.93	12	3.0%	-0.43 [-1.42, 0.56]	
Grossi-1 1986	3.7	6.64	10	73.7	16.64	15	2.5%	-4.97 [-6.67, -3.27]	
Grossi-2 1986	14	2.91	7	87.8	10.3	7	1.0%	-9.131-13.255.001 +	
Grossi-3 1986	18.7	2.236	5	72	10.78	6	1.4%	-5.96 [-9.29, -2.63]	
Grossi-4 1986	37.4	16.9	6	85.5	11.27	6	2.3%	-3.09 [-4.98, -1.21]	
Grossi-5 1986	73	17.9	5	70	17.64	6	2.9%	0.15[-1.04, 1.34]	
Kapur 2013	28	7	4	49	14	4	2.4%	-1.65 [-3.44, 0.14]	
Kapur 2015	42	8	5	73	13	5	2.3%	-2.59 [-4.51, -0.68]	
Ko-1 2020	43.3	24.6	6	54.7	20.3	5	2.8%	-0.46 [-1.67, 0.75]	
Ko-2 2020	22.2	13.4	6	54.7	20.3	5	2.6%	-1.77 [-3.27, -0.26]	
aks 1978	9.98	1.31	7	14.5	1.4	7	2.4%	-3.121-4.84 -1.401	
aschinger-1 1983	3.7	6.3	9	73.7	14.26	11	2.1%	-5.87 (-8.08, -3.65)	
aschinger-2 1983	21.8	14 54	10	73.7	14.26	11	2.7%	-3 46 1-4 90 -2 021	
Meyns-1 2003	18.1	10	6	67.2	4.6	8	1.6%	-6 25 [-9 19 -3 32] +	
Meyne-2 2003	41.6	5.8	6	67.2	4.6	B	2.0%	-4 67 [-6 97 -2 37]	
Meyns-3 2003	54	8	6	67.2	4.6	8	2.7%	-1.98 [-3.35 -0.61]	·
Nishi 1989	4.8	15		22.3	57	7	2.3%	-4 24 [-6 20 -2 28]	
Okamoto 1986	21	14 69	6	44	21.16	7	2.8%	1 16 [-2 37 0 06]	
Pennok-1 1979	12.6	16.13	10	27.7	20.55	10	3.1%	-0.781-1.70.0.131	
Pennok-2 1979	22.5	18.96	10	27.7	20.55	10	3.1%	-0.25 (-1.13, 0.63)	
Saku-1 2016	5	3.1	5	41.8	6.4	6	1.3%	-6.47 1-10.05 -2.891 +	
Saku-1 2018	21	1.5	5	16.3	2.6	5	1.3%	-5.94 (-9.51 -2.37)	
Saku-2 2016	29.1	5.6	5	41.8	64	6	2.6%	-1 92 [-3.47 -0.37]	
Saku-2 2018	8.5	4.3	5	16.3	2.5	43	2.9%	-2 75 [-3 84 -1 66]	
Smalling 1992	21.65	16.4	6	62.6	15	8	2.5%	-2 41 [-4 04 -0.77]	
Sun 2016	18.1	4.8	6	35.3	6.2	6	2.4%	-2.86 [-4.66, -1.07]	
Sunanawa-1 2018	39.9	7.4	6	56.3	6.5	5	2.5%	-2 14 1-3 77 -0.511	
Sunagawa-2 2018	23.7	10.6	e e	56.3	6.5	5	2.1%	-3.31 [-5.40, -1.21]	
Takanashi 1981	15.9	35	6	22.7	40	6	2.7%	-1 47 62 82 -0 131	
Famareille 2008	24.1	15.8	A	51.59	16.26	E.	2.7%	-1 58 1-2 95 -0 211	
/inten- Johansen 1985	42	12.6		30.0	19.2	R	2.0%	-1.58 (-2.71 -0.45)	
Noutors 1993	12.0	7 836	8	11.8	7 836	6	2.0%	0.12[.1.02.1.25]	
Yoshitake 2012	39.66	11.16	6	65.38	6.07	6	2.4%	-2.64 [-4.36, -0.93]	
Total (95% CI)			265			337	100.0%	-2.19 [-2.70, -1.69]	•
			1.12	1001000-000	12/12/22/22	2211	2003-005	ALCONTRACTOR CONTRACTOR CONTRACTOR	N78

Miyashita S, Kapur NK, Ishikawa K, et al. J of Cardiovasc Trans Res. 2021;14:467-475.

What's next?

UNLOADING 30MINS BEFORE REPERFUSION DEMONSTRATED STRONGEST CARDIOPROTECTIVE EFFECT

reperfusion alone 120 mins unload + reperfusion Ш 120 mins LAD occlusion 90 mins unload + reperfusion 120 mins reperfusion + unload IV 120 mins

Experimental Design

Results: Infarct Size / Area-at-Risk (AAR)

DOOR-TO-UNLOAD: STEMI PILOT TRIAL STUDY DESIGN

Independent Data Safety Monitor, Electrocardiographic, Angiographic and Cardiac Magnetic Resonance Imaging Core Labs

SUCCESSFUL ENROLLMENT & PROTOCOL COMPLETION ZERO BAIL-OUT PCI IN THE U-DR GROUP

U-IR Unloading followed by Immediate ReperfusionU-DR Unloading for 30 minutes with Delayed Reperfusion

SUCCESSFUL TRANSLATION FROM PRE-CLINICAL TO PATIENTS

Infarct Size / Area at Risk (AAR)

U-IR Unloading followed by Immediate Reperfusion U-DR Unloading for 30 minutes with Delayed Reperfusion

1. Esposito M, et al. JACC; 2018

2. Kapur N, et al. Circulation Ahead of Print; 2018, 10.1161

3. Patel M, et al. JAMA; 2011

Increasing Severity of MI

U-IR Unloading followed by Immediate Reperfusion U-DR Unloading for 30 minutes with Delayed Reperfusion

SAFETY OUTCOMES

Clinical Variable	U-IR (n=25)	U-DR (n=25)	p-value
CV Mortality, n (%)	1 (4%)	1 (4%)	NS
Reinfarction, n (%)	0	0	NS
Stroke or TIA, n (%)	1 (4%)	0	NS
Traditional 30-Day MACCE, n (%)	2 (8%)	1 (4%)	NS
Major Vascular Events, n (%)	0	2 (8%)	NS
Bleeding (BARC ≥ 2)	3 (12%)	4 (16%)	NS
Bleeding Requiring Transfusion	2 (8%)	1 (4%)	NS
Aortic Valve Injury	0	0	NS
Acute Renal Dysfunction	1 (4%)	1 (4%)	NS
Hemolysis	1 (4%)	0	NS

U-IR Unloading followed by Immediate Reperfusion U-DR Unloading for 30 minutes with Delayed Reperfusion

SAFETY OUTCOMES

Clinical Variable	U-IR (n=25)	U-DR (n=25)	p-value
CV Mortality, n (%)	1 (4%)	1 (4%)	NS
Reinfarction, n (%)	0	0	NS
Stroke or TIA, n (%)	1 (4%)	0	NS
Traditional 30-Day MACCE, n (%)	2 (8%)	1 (4%)	NS
Major Vascular Events, n (%)	0	2 (8%)	NS
Total 30-Day Composite MACCE, n (%)	2 (8%)	3 (12%)	NS

CV Mortality → POOR PATIENT SELECTION

- One mortality on POD 24 due to chronic lung disease
- One mortality due to shock on admission

Major Vascular Events → PREVENTABLE VASCULAR INJURY

• Two iliofemoral dissection at the time of device removal

LARGE ANTERIOR MI'S BENEFIT FROM UNLOADING IRRESPECTIVE OF DTB TIME

DTU PILOT PER-PROTOCOL ANALYSIS

