OCT in stented vessel

Myeong-Ki Hong, M.D. Ph D

Professor of Medicine Division of Cardiology, Severance Cardiovascular Hospital Yonsei University College of Medicine, Seoul, Korea

Contents

Strut coverage:
apposed vs. malapposed
covered vs. uncovered

• Evaluation of neointima

Traditional OCT image analysis

Analysis of cross-sectional OCT images at a 1-mm interval (every 15 frames).

1. Neointimal thickness

The distances between the endoluminal surface of neointimal and the strut reflection

2. Stent apposition

The distances between the endoluminal surface of the strut reflection and the vessel wall

Post-stent struts

Well apposed

Malapposed

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Follow-up apposed struts

A Length: 0.20mm B Length: 0.10mm

10/02/2013 09:58:51 0001

0

Uncovered

Covered

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Follow-up malapposed struts

Covered

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

6

Neointima

- Neointima without neoatherosclerosis
 - Homogeneous
 - Heterogeneous
 - Layered

Neoatherosclerotic neointima

	DES struts coverage crossing the					
	side-branch vessels (n=51)					
		SES	PES	ZES	D	
		(n=22)	(n=15)	(n=14)	F	
Side branch vessel side						
Total No. of struts, n		356	165	143		
Percentage of covered struts, %		65 ± 37	20 ± 31	83 ± 29	<0.001	
Ne	ointimal hyperplasia thickness, mm	0.04 ± 0.03	0.02 ± 0.02	0.08 ± 0.06	0.002	
Ме	an No. of struts	16 ± 12	11 ± 7	13 ± 12	0.360	
No	. of covered struts	10 ± 10	1 ± 2	11 ± 11	0.010	
Her AY, Hong MK et al, Am J Cardiol 2010;105:1565-69						
	SEVERANCE CARDIOVASCULAR HOSPITAL		YONSEI UNIVERSITY	COLLEGE OF MEDICINE		

Comparison of neointimal thickness on unapposed struts crossing the side-branch

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Strut coverage over non-apposed side branch stents

Her AY, Kim JS, Hong MK et al, J Invasive Cardiol 2013;25:364-366

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

OCT definition

Uncovered strut = Neointimal hyperplasia (NIH) thickness of 0 µm

The percentage of uncovered struts = (number of uncovered struts/total number of struts in all crosssections of the lesion) × 100

Kim BK, Hong MK, Int J Cardiovasc Imaging 2012:28;715-723

٢

Randomized comparison of early strut coverage between zotarolimus- and everolimus-eluting stents using OCT

Kim S, Hong MK, et al. Am J Cardiol 2013;111:1-5

mean percentage of uncovered struts (BES =15.9% vs. SES= 25.1%, p=0.003)

Kim BK, Hong MK, et al. *EuroIntervnetion (in press)*

Pathological Correlates of Late Drug-Eluting Stent Thrombosis

Strut Coverage as a Marker of Endothelialization

The most powerful histological predictor of stent thrombosis was endothelial coverage.

The best morphometric predictor of LST was the ratio of uncovered to total stent struts.

The odds ratio for thrombus with a ratio of uncoveredto total struts > 30%9.0 (95% CI, 3.5 to 22)

Finn AV, et al. *Circulation* 2007;115:2435-41

Clinical significance of uncovered struts

Examination of the In Vivo Mechanisms of Late Drug-Eluting Stent Thrombosis

Findings From Optical Coherence Tomography and Intravascular Ultrasound Imaging

Intravascular Ultrasound Imaging

- 18 patients with DES LST, Median 615 days after implant
- The presence of uncovered stent struts as assessed by OCT were associated with LST after DES

Guagliumi G, et al. JACC Intv 2012;5:12-20

We need more information!

- No clinical data regarding the long-term clinical outcomes in asymptomatic patients with follow-up OCT;
 % of uncovered struts that predict adverse events in the condition of asymtomatic status vs. % of uncovered struts detected at the time of onset of stent thrombosis
- 2. Unknown about the practical impact of uncovered struts on long-term clinical outcomes in real clinical practice.
- 3. Unknown about cut-off value of uncovered strut.

Cut-off value of uncovered strut to predict clinical outcomes

Between Sep 2007 and July 2011, a total of 489 patients (535 lesions) enrolled in Yonsei OCT Registry

Major adverse cardiac events: Composite of CV death, MI or stent thrombosis

Won H, Hong MK, et al. Int J Cardiovasc Imaging 2013;29:1255-1263

ROC curve of uncovered struts for prediction of MACE

SEVERANCE CARDIOVASCULAR HOSPITAL

Cox regression analysis Won H, Hong MK, et al. Int J Cardiovasc Imaging 2013;29:1255-1263

	Univariate		Multivariate			
variable	HR	95% CI	р	HR	95% CI	р
Age	1.050	0.960-1.148	0.287			
SES	4.248	0.773-23.362	0.096			
Pre-PCI MLD, mm	0.237	0.041-1.361	0.106			
Post-PCI MLD, mm	0.041	0.008-0.899	0.041	0.019	0.001-0.513	0.018
% NIH CSA	0.887	0.787-1.001	0.052			
% Malapposed struts	1.095	0.932-1.286	0.268			
Uncovered struts≥5.9%	17.300	1.969-152.039	0.010	19.781	2.071-188.968	0.010
Max length of uncovered struts, mm	1.232	1.010-2.436	0.049			

Is the traditional OCT analysis sufficient ?

Neointimal thickness

Stent apposition

What are the spatial distributions of uncovered or malapposed struts ?

Creation of contour map

This technology provides detailed information previously obtainable only by gross pathologic examination.

HA J, Hong MK, et al. J Am Coll Cardiol Img 2012;5:852-853

Contour map of SES at 6-month follow-up OCT

Kim BK, Hong MK, et al. EuroIntervnetion (in press)

Contour map of Nobori BES at 6-month follow-up OCT

Kim BK, Hong MK, et al. EuroIntervnetion (in press)

Clinical implication of neoatherosclerosis: TLR and stent thrombosis

152 ISR lesions with NIH > 50% of stent area

	Presence of neoatherosclerosis	Absence of neoatherosclerosis	р
	(n = 54)	(n = 98)	
Time interval to FU OCT (months)	70.7 (54.4 – 120.4)	13.4 (10.6 – 39.6)	< 0.001
Clinical presentation at FU OCT, # (%)			< 0.001
Asymptomatic	4 (7.4)	22 (22.4)	
Stable angina	33 (61.1)	72 (73.5)	
Acute coronary syndrome	17 (31.5)	4 (4.1)	
Target lesion revascularization, # (%)	50 (92.6)	76 (77.6)	0.018
Stent thrombosis, # (%)	8 (14.8)	0 (0)	< 0.001

Lee SY, Hong MK, et al, *Eurointervention* (In press)

Cut-off time to predict neoatherosclerosis

152 ISR lesions with NIH > 50% of stent area

Area Under Curve: 0.839 95% Confidence Interval: 0.764 to 0.898

Optimal cut-off time: 30 months Sensitivity: 91.4% Specificity: 72.0% Negative predictive value: 95.7% Positive predictive value: 55.2%

Lee SY, Hong MK, et al, *Eurointervention* (In press)

Independent risk factors for neoatherosclerosis

152 ISR lesions with NIH > 50% of stent area

	Odds ratio	95% CI	р
Hypertension	4.223	1.354-13.170	0.013
Use of first-generation DES ⁺	14.666	1.065-201.936	0.045
Use of next-generation DES ⁺	10.149	0.398-258.629	0.161
Stent age (months)	1.054	1.028-1.081	< 0.001

⁺ vs. bare metal stent

Lee SY, Hong MK, et al, *Eurointervention* (In press)

507 DES-treated lesions >100µm of mean NIH thickness on follow-up OCT

Grouped by stent age

Time interval after index procedure (months)

Lee SY, Hong MK, et al. Yonsei Med J (in press)

507 DES-treated lesions >100µm of mean NIH thickness on follow-up OCT

Grouped by CSA stenosis

Lee SY, Hong MK, et al. Yonsei Med J (in press)

507 DES-treated lesions >100µm of mean NIH thickness on follow-up OCT

Under 30 months of stent age

507 DES-treated lesions >100µm of mean NIH thickness on follow-up OCT

Over 30 months for stent age

Lee SY, Hong MK, et al. Yonsei Med J (in press)

Main findings

Dominant neointimal type of DES

Stent age	< 30 months	> 30 months
< 50% neointimal CSA stenosis	homogeneous	homogeneous
> 50% neointimal CSA stenosis	Layered	neoatheroma

Lee SY, Hong MK, et al. Yonsei Med J (in press)

Serial OCT: DES

Total (n = 76)	9 months FU	2 years FU	Р
Qualitative analysis			
Intracoronary thrombus	8 (10.5%)	7 (9.2%)	0.79
Lipid-laden neointima	11 (14.5%)	21 (27.6%)	0.047
TCFA-like neointima	3 (3.9%)	10 (13.2%)	0.04
Heterogeneous pattern	49 (64.5%)	47 (61.8%)	0.73
Neovascularization	34 (44.7%)	56 (73.7%)	<0.001
Extrastent lumen	15 (19.7%)	21 (27.6%)	0.25

Kim JS, Hong MK, et al. JACC Cardiovasc imaging 2012;5:1145-55

Conclusions

 OCT is an useful tool to evaluate the status of DES struts and characterization of neointimal tissue.

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE