

FFR_{CT} – Update on Algorithms, Validation Studies and Planned Clinical Trials

Charles A. Taylor, Ph.D.

Founder and Chief Technology Officer HeartFlow, Inc.

Consulting Professor of Bioengineering Stanford University

Potential conflicts of interest

Charles A. Taylor, Ph.D.

I have the following potential conflicts of interest to report:

- Employment in industry
- Stockholder of a healthcare company

Diagnosing anatomic and functionally-significant CAD

FFR_{CT} - Noninvasive Functional Assessment of CAD

Unique patient-specific modeling technology based on over 20 years of research

Clinically validated in over 600 patients

HeartFlow provides FFR_{CT} as a service to physicians to aid in assessing significance of CAD

Overview of the FFR_{CT} Process

Hospital / Physician Workflow

Sample of Clinical Report Provided to Physician

Created with FFR2, +1.6.0.123.Product on 0-29-2013.0.43 PM UTC. HFID: 078x204x7023-497x1344e1010-02514044 1403 Segont Bird + Building 8 + Redwood City CA-94083 UBA + tal +1.650.341.1221 + tae +1.650.358.2594 + www.haatfine.com

page field

FFRct is not commercially available in the US

HeartFlow Clinical Trial Data

DISCOVER-FLOW

- P.I. Bon Kwon Koo, M.D., Ph.D.
- Completed 2011
- N=104 patients

• DeFACTO

- P.I. James Min, M.D.
- Completed 2012
- N=252 patients

Journal of the American U-diage of Cardiology © 2011 by the American Calings of Cardiology Frenchmun Published by Elsevier Isa.

Vol. 68, No. 19, 2011 185N 0725-3097436.00 doi:10.1010/j.jou-2011.06.000

Cardiac Imaging

Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms

Results From the Prospective Multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) Study

Bon-Kwon Koo, MD, PHD,* Andrejs Erglis, MD, PHD,† Joan-Hyung Doh, MD, PHD,‡ David V. Daniels, MD,§ Sanda Jegere, MD,‡ Hyo-Soo Kim, MD, PHD,* Allison Dunning, MD,¶ Tony DeFrance, MD,# Alexandra Lansky, MD,** Jonathan Leipnic, BSC, MD,‡† James K. Min, MD‡‡ Secol and Goyang, South Korea; Riga, Latvia; Pale Alto, Saw Francisco, and Los Argeles, Galifornia; New York, New York; New Haven, Connecticut; and Vancouver, British Columbia, Canada

ONLINE FIRST

Diagnostic Accuracy of Fractional Flow Reserve From Anatomic CT Angiography

JAMA. 2012;308(12):doi:10.1001/2012.jama.11274

• NXT

- P.I. Bjarne Norgaard, M.D., Ph.D.
- Completed 2013
- N=254 patients
- 10 Worldwide Sites
 - EU
 - Japan
 - Korea
 - Australia

Primary Endpoint:

 Per-patient diagnostic performance as assessed by the area under the receiver operating characteristic curve (AUC) of FFR_{CT} vs. coronary CTA for the diagnosis of ischemia. (Reference standard: FFR ≤ 0.80)

Secondary Endpoints:

- Diagnostic performance (accuracy, sensitivity, specificity, PPV and NPV) of FFR_{CT}, coronary CTA, and invasive coronary angiography

Subject Inclusion / Exclusion Criteria

Inclusion Criteria:

- Underwent <u>>64-row CT and ICA scheduled</u>
- < 60 days between CT and ICA

Exclusion Criteria:

- Prior CABG or PCI
- Suspected ACS
- Recent MI within 30 days of CT
- Contraindication to nitrates, beta blockade or adenosine

ICA = Invasive coronary angiography; CABG = coronary artery bypass surgery; ACS = acute coronary syndrome; MI = myocardial infarction; PCI = percutaneous coronary intervention

Patient Enrollment

- Study enrollment 9/2012 8/2013
- 10 sites in Europe, Asia, and Australia

Study Population

Patient Characteristics						
Age (years) [mean <u>+</u> SD]	64 ± 10					
Male gender	64%					
Prior MI	2%					
Diabetes mellitus	23%					
Hypertension	69%					
Pre-test Likelihood of CAD	58%					
FFR≤0.80	32%					

CT Characteristics

 Nitrates 	99.6%
 Beta Blockers 	78%
 Heart Rate (bpm) Range 	63 37-110
 Prospective mean dose (mSv) 	54% 3
 Retrospective mean dose (mSv) 	46% 14
 Calcium score* Mean >400 	302 26%

Discrimination of Ischemia

Greater discriminatory power for FFR_{CT} versus CT stenosis

Patient (Δ 0.09, p<0.0008) Vessel (Δ 0.14, p<0.0001)

Per-Patient Diagnostic Performance

$\mathsf{FFR}_{\mathsf{CT}}$ reclassification

- FFR_{CT} reclassified **68%** of CT false positives as true negatives
- If FFR_{CT} were used prospectively, 148 of 254 patients could have been deferred from diagnostic cath

Nørgaard et al, JACC 2014: ePub ahead of print; DOI: 10.1016/j.jacc.2013. 11.043

Per-Vessel Diagnostic Performance

NXT Grey Zone analysis

- FFR "Grey Zone" defined as $0.75 \le FFR \le 0.80$
- Among vessels with FFR ≤ 0.75 (i.e. outside of "grey zone"), only 3 were negative by FFR_{CT} (i.e. FFR_{CT} > 0.80)
- NPV for FFR_{CT} in this subset = 98%

Diagnostic Performance of CT and FFR_{CT}: Effect of Calcium

Case Example

LAD stenosis 70-90%

DISCOVER-FLOW→DeFACTO→NXT

Evolution of Technology, core scientific principles remain the same

- Changes and advances in technology
 - Manual model building —> semi-automated/automated image processing
 - Improved boundary condition inputs
 - Reproducibility/quality control/analyst training
- Image quality
 - Prequalification of site CT: education re SCCT guidelines
 - Pre-specified image quality standards for initiation and enrollment
 - Use of NTG (99% vs 75% in DeFACTO)
- FFR measurement
 - Site education
 - Core lab control

Machine Learning used to further improve image processing algorithms

Impact of SL NTG on cCTA

Prior to Sublingual Nitrate administration

5 min after Sublingual Nitrate administration

79 y.o. female patient Image courtesy of Munemasa Okada, Department of Radiology, Yamaguchi Medical Center

Primary Peer-reviewed Publications

1.	DISCOVER-FLOW study results	Коо	JACC 2011; 58: 1989
2.	DISCOVER-FLOW intermediate stenosis	Min	Am J Cardiol 2012; 971
3.	DISCOVER-FLOW image quality	Min	JCCT 2012; 6: 191
4.	DeFACTO rationale and design	Min	JCCT 2011; 5: 3011
5.	DeFACTO study results	Min	JAMA 2012; 308(12): 1237
6.	DeFACTO intermediate stenosis	Nakazato	Circulation: CV Imaging 2013 ; 6: 881
7.	DeFACTO image quality, patient prep	Leipsic	Am J Radiology 2013, in press
8.	Non-invasive FFR: scientific basis	Serruys	EuroIntervention 2012; 8: 511
9.	Scientific basis of FFR _{CT}	Taylor	JACC 2013, 61: 2233-41
10.	FFR _{ct} derived from cCTA	Zarins	J Cardiovasc Transl Res 2013
11.	Non-inv dx of ischemia-causing stenosis	Yoon	JACC Imaging 2012; 5: 1088
12.	CT-FFR next level in cardiac imaging	Meijs	Neth Heart J 2012; 20: 410
13.	Noninvasive FFR using CT	Yoon	Cardiovasc Dx and Rx 2012; 2: 105
14.	Integrating physiology and anatomy	Arsanjani	Curr Cardiovasc Imaging Rep 2012; 5: 301
15.	Modeling of FFR based on cCTA	Grunau	Curr Cardio Rep 2013; 15: 336
16.	ABSORB trial 5 year follow up	Serruys	JACC Interventions 2013, 6: 999
17.	$\ensuremath{FFR_{CT}}$ anatomic-functional integration	Al-Hassan	Future Cardiol 2013; 9: 243
18.	New frontiers in CTA	Min	Heart 2013; 99: 661
19.	Virtual FFR by CT	Rajani	Eurointervention 2013; 9:277
20.	Physiologic assessment of CAD by CT	Kochar	Korean Circ J 2013; 43: 435
21.	Virtual coronary stenting and $\ensuremath{FFR_{CT}}$	Kim	JACC Interventions 2013
22.	Cost-consequences of FFR _{CT}	Hlatky	Clinical Cardiology 2013, 36: 743
23.	HeartFlowNXT rationale and design	Gaur	JCCT 2013, 7: 279
24.	HeartFlowNXT study results	Norgaard	JACC 2014, 63, No. 12, 1146-55

FFR_{CT}: Building the Body of Evidence

PLATFORM:

Comparing Current Care to FFR_{CT}

Principal Investigators: Pam Douglas, Bernard de Bruyne, Mark Hlatky, Gianluca Pontone

Symptomatic subjects with suspected CAD and intermediate likelihood of CAD(20%-80%)¹ and no contraindications to cCTA or FFR_{CT} referred for invasive coronary angiography (with or without prior non-invasive coronary ischemia testing)

Heart Flow ⁻						FFR	T Re	esul
			,	Patier Birth I CT Study I	nt ID 1 Date 4 Date 1	19-0062-S-L 1/23/1959 1/21/2014		
Immary Coronary Artery		FFR	1.00	0.90	0.80	FFR _{er} 0,70	0.60	0.50
ummary CORONARY ARTERY Left Main	LM	ня _{ст} 0.97	1.00	0.90	0.00	FFR ₀₇ 0.70	0.60	0.50
ooronary coronary artery Left Main Left Anterior Descending System	LM		1.00	0.90	0.00	FTR ₀₇ 0.70	0.60	0.50
ummary <u>CORONARY ARTERY</u> Left Main Left Anterior Descending System Left Circumflex System	LM LAD LCx	997 0.97 0.91 0.96	1.00	0.90	0.00	FTR ₀ r 0.70	0.60	0.50

Measured Fractional Flow Reserve (FFR) values ≤ 0.80 suggest hemodynamic (functional) significance (1,2,3).

Created with FFR_{GT} HeartFlow_v1.5.0.823 on 1/22/2014 10.44.24 PM UTC. HFID: 3aa90591487-4cde-9/3a-d8ecab5ee7/2 Copyright 2013 HeartFlow, Inc. All rights reserved. FFR_{GT}, HeartFlow and the HeartFlow logo are among the tradomarks of HeartFlow, Inc. 1400 Seeport Bivd + Building B + Redwood City, CA 94063 USA + tat: +1.850.241.1221 + tax: +1.650.388.2564 + www.heartflow.com

page 1 of 3

Measured Fractional Flow Reserve (FFR) values < 0.80 suggest hemodynamic (functional) significance (1,2,3).

Created with FFR_{c1} HeartFlow_v1.5.0.823 on 1/15/2014.2:17.44 AM UTC . HFID: 3b5e074s-40f7-4cd0-62d3-d7bad4c1d562 Copyright 2013 HeartFlow, Inc. All rights reserved. FFR_{c1}, HeartFlow and the HeartFlow logo are among the trademarks of HeartFlow, Inc. 1400 Seaport Bivd + Building B + Redwood City, CA 94003 USA + tel: +1.650.241.1221 + fax: +1.650.300.2504 + www.heartflow.com

27

FFR_{CT} - Delivering Anatomical AND Functional Capabilities in <u>One</u> Noninvasive Test

- Clear need for a better noninvasive CAD diagnostic test combining anatomy and function
- FFR_{CT} demonstrates high diagnostic accuracy validated in 3 prospective multicenter clinical trials
- FFR_{CT} leverages high-fidelity image processing, well established physiology principles and robust computational fluid dynamics methods to solve the laws of physics governing blood flow

Thank you

