

zapus

Bioresorbable Vascular Scaffolds Insights from Serial Intravascular Imaging Studies

BVS evolved from an experimental therapy into a commercially available product in many parts of the world with a considerable number of real-world registries ongoing

BVS -Insights from intravascular imaging Imaging studies of BVS:

Trial name	Device	Study	Study	Follow-up	Imaging modalities
	studied	device:	device:	interval	
		eluted drug	backbone		
ABSORB A	ABSORB	Everolimus	PLLA,	5 years	QCA, vasomotion, IVUS,
	BVS 1.0		PDLLA		IVUS-VH, palpography,
			coating		echogenicity, OCT
ABSORB B	ABSORB	Everolimus	PLLA,	3 years	QCA, vasomotion, IVUS, OCT
	BVS 1.1		PDLLA		
			coating		

BVS perform well in simple lesions: COHORT A

Hierarchical	6 Months 30 Patients	12 Months 29 Patients**	18 Months 29 Patients**	2 Years 29 Patients**	3 Years 29 Patients**	5 Years 29 Patients**
Ischemia Driven MACE (%)	3.3% (1)*	3.4% (1)*	3.4% (1)*	3.4% (1)*	3.4% (1)*	3.4% (1)*
Cardiac Death (%)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)
MI (%)						
Q-Wave MI	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)
Non Q-Wave MI	3.3% (1)*	3.4% (1)*	3.4% (1)*	3.4% (1)*	3.4% (1)*	3.4% (1)*
Ischemia Driven TLR (%)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)
by PCI	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)
by CABG	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)

No scaffold thrombosis up to 5 years

ABSORB COHORT A: 5 Year Clinical Results Onuma Y, JACC Cardiovasc Interv 2013

BVS perform well in more complex lesions: EXTEND

Lessons learned from acute and late scaffold failures in the ABSORB EXTEND trial

Yuki Ishibashi¹, MD, PhD; Yoshinobu Onuma¹, MD; Takashi Muramatsu¹, MD, PhD; Shimpei Nakatani¹, MD; Javaid Iqbal¹, MRCP, PhD; Hector M. Garcia-Garcia¹, MD, PhD; Antonio I. Bartorelli², MD; Robert Whitbourn², MD; Alexander Abizaid⁴, MD, PhD; Patrick W. Serruys¹, MD, PhD; on behalf of the ABSORB EXTEND Investigators

FUP12 monthsN450 PtsMACE4.2%TVF4.7% \longrightarrow Scaffold
Thrombosis0.9 %

Ishibashi Y, EuroInterv J, 2014

BVS show moderate acute recoil

For BVS Gen 1.1. see Gomez-Lara et al. 2010 Kara

Karanasos A et al, presented at ACC 2014

BVS show late lumen enlargement

Karanasos A et al, presented at ACC 2014

BVS show good healing & apposition

Serruys et al, Lancet 2010 Simsek C et al, Eurointervention in press

BVS show good healing & apposition

- At 3 year FUP: strut coverage 98% ISA in 6% scaffolds
 - Amount of coverage directly related to shear stress

BVS Gen 1.1

Serruys PW et al, Eurointervention 2014 Bourantas CV et al, JACC Intv 2014

BVS show complete bioresorption over time

• OCT: Struts no longer discorpible

Struts no longer discernible

Simsek C et al, Eurointervention in press

BVS show complete bioresorption over time

Simsek C et al, Eurointervention in press

BVS show complete bioresorption over time

• VH-IVUS:

Reduction of dense calcium (indirect sign of bioresorption)

Effect more pronounced for Gen 1.0 than for Gen 1.1 ?

Serruys PW et al, Eurointervention 2014

What did we learn?

BVS allow for reduction of plaque burden

IVUS: Lumen area tends to increase, while the vessel area remains stable due to significant decrease in plaque area

Simsek C et al, Eurointervention in press

BVS allow for reduction of plaque burden

	After procedure	6 months	2 years	5 years	P-value after procedure vs. 5 years	P-value 6 months vs. 5 years	P-value 2 years vs. 5 years
Ν	8	8	7	7			
Grey-scale IVUS							
Vessel area (mm ²)	15.72 (±3.00)	15.34 (±2.00)	14.09 (±1.66)	14.52 (±1.81)	0.60	0.40	0.75
Average lumen area (mm ²)	6.95 (±0.63)	6.17 (±0.74)	6.56 (±1.16)	6.96 (±1.13)	0.75	0.06	0.12
Plaque area (mm ²)	8.78 (±2.83)	9.17 (±1.86)	7.54 (±1.24)	7.57 (±1.63)	0.60	0.03	0.92
Minimum Iumen area (mm ²)	5.81 (±0.62)	4.67 (±0.77)	4.96 (±1.08)	4.81 (±2.04)	0.60	0.74	0.75

IVUS:

Lumen area tends to increase, while the vessel area remains stable due to significant decrease in plaque area

BVS can restore vasomotion

BVS can restore vasomotion

Reaction to nitrates

Vasomotive properties are preserved at the segment of the scaffold

Serruys PW et al, Eurointervention 2013

BVS might promote favourable plaque modification

Improvement of the vasomotor response over time
Correlation with reduction of hyper-echogenicity by IVUS

Brugaletta S et al, Eur Heart J 2012

Erasmus MC **BVS** -Insights from intravascular imaging What did we learn?

BVS might promote favourable plaque modification

5 years

- Late lumen enlargement •
- **Development of signal-rich** • layer
- Separation of thrombogenic • plaque and lumen

Sealing layer?

BVS might promote favourable plaque modification

- Late lumen enlargement
- Development of signal-rich layer
- Separation of thrombogenic plaque and lumen

Sealing layer?

Karanasos A et al, Circulation 2012

Adequate BVS sizing is crucial

Key issue with the ABSORB scaffold Limited range of expansion 2.5 mm scaffold → up to 3.0mm 3.0 mm scaffold → up to 3.5mm 3.5 mm scaffold → up to 4.0mm

Beyond that range, struts can break.

Therefore sizing pre-implantation is of paramount importance.

Adequate BVS sizing is crucial

Small malapposition

- Correctable by post dilatation
- Resolve at FUP

Large malapposition

- Uncorrectable (Persistent at FUP)
- Overexpansion by a large balloon
 - → Acute disruption

Courtesy of Onuma Y

Adequate BVS sizing is crucial

Small malapposition

- Correctable by post dilatation
- Resolve at FUP

Large malapposition

- Uncorrectable (Persistent at FUP)
- Overexpansion by a large balloon
 - → Acute disruption

Courtesy of Onuma Y

Adequate BVS sizing is crucial

Small malapposition

- Correctable by post dilatation
- Resolve at FUP

Large malapposition

- Uncorrectable (Persistent at FUP)
- Overexpansion by a large balloon
 - → Acute disruption

Courtesy of Onuma Y

Adequate BVS sizing is crucial

OCT non-optimal deployment end points							
n=52	DMAX < 2.5 mm (n=13) Small vessel	DMAX 2.5 to 3.3 mm (n=30)	DMAX > 3.3 mm (n=9) Large vessel	р			
minSA < 5 mm ²	31%	10%	0	0.08			
RAS > 20%	46%	53%	78%	0.31			
Edge dissections*	62%	33%	11%	0.05			
ISA struts > 5%	8%	37%	67%	0.02			
Acute disruption	0%	7%	11%	0.52			

How to Size Adequately?

In vivo validation of a novel three-dimensional quantitative coronary angiography system (CardiOp-BTM): comparison with a conventional two-dimensional system (CAAS IITM) and with special reference to optical coherence tomography

Keiichi Tsuchida, MD, PhD; Willem J. van der Giessen, MD, PhD; Mark Patterson, MRCP; Shuzou Tanimoto, MD; Héctor M. García-García, MD, MSc; Evelyn Regar, MD, PhD; Jurgen M. R. Ligthart, BSc; Anne-Marie Maugenest; Gio Maatrijk; Jolanda J. Wentzel, PhD; Patrick W. Serruys*, MD, PhD, FACC, FESC

Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands

EuroIntervention

Clinical research

Erasmus MC BVS -Insights from intravascular imaging

What did we learn?

zafing

How to Size Adequately? ullet

	QCA	IVUS	ОСТ
Dimension assessment	underestimation	overestimation	correct
Detection of malapposition	none	poor	optimal
Detection of fracture	none	none/poor	optimal
Need for coregistration	none	yes	yes
Cost/ procedure time	no	additional	additional
Regulatory labelling	no	yes	yes

Erasmus MC **BVS** -Insights from intravascular imaging Some words of caution!

Complex lesions? ightarrow

- **Different healing process** • after BVS implantation in pts with acute MI?
- At 6 months FUP: • Patterns of resolved, persistent, and also late ISA

Baseline C 1 G 6m FUP

Diletti R et al, Eur Heart J 2014 Karanasos et al, Int J Cardiol 2013

Erasmus MC **BVS** -Insights from intravascular imaging Some words of caution!

Complex lesions? \bullet

- **Different healing process** • after BVS implantation in pts with acute MI?
- At 6 months FUP: • Patterns of resolved, persistent, and also late ISA
- More comprehensive ISA • score needed?

ISA score 0: Completely apposed scaffold

ISA score 1: Presence of evaginations >0.10mm2

ISA score 3: Malapposition with partial bridge formation

ISA score 4: Isolated malapposed

Karanasos et al, submitted

Some words of caution!

(Very late) Scaffold thrombosis has been reported

CARDIOVASCULAR FLASHLIGHT

doi:10.1093/eurheartj/ehu031

Very late bioresorbable scaffold thrombosis after discontinuation of dual antiplatelet therapy

Antonios Karanasos, Robert-Jan van Geuns, Felix Zijlstra, and Evelyn Regar*

Department of Interventional Cardiology, Thoraxcentre, BA-585, Erasmus University Medical Centre, 's Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands * Corresponding

A 57-year-ok stable angina days after d therapy (DA had undergo intervention v (BVS; ABSOR CA, USA) imp artery (LCx) by everolimu: the distal left cending arter ostium. Fracti intervention y At presenta onary thromb stent implanta To our kno alternative to being comple have occurred together with during left mai after DAT dis

Funding: Fur Rotterdam, N

© The Author 20 This is an Open A which permits nor permissions@ou

D

Karanasos A et al, Eur Heart J 2014

BVS

- promote good vascular healing
- show complete bioresorption over time
- allow for late lumen enlargement
- allow for reduction in plaque burden
- allow for restoration of vasomotion
- might promote favourable plaque modification

ABSORB Cohort A – 5 Year FUP

Erasmus MC 2 afms Internet

Thank you for your attention!

PhD Students A. Karanasos C. Simsek N. van Ditzhuijsen J. van der Sijde

Interventional Cardiology J. Ligthart K. Witberg R.J. van Geuns P. de Jaegere N. van Mieghem M. Valgimigli R. Diletti F. Zijlstra

Experimental Cardiology H. van Beusekom

Hemodynamics Laboratory J. Wentzel F. Gijsen

Bioengineering G. van Soest A.F.W. van der Steen Imaging Group N. Bruining K. Sihan