

DES summit

Insight into BVS from Multiple Imaging Studies

Y. Onuma, MD, PhD Evelyn Regar, MD, PhD RJ. van Geuns, MD, PhD P. W. J. C. Serruys, MD, PhD Thorax Centre, Erasmus MC

TCTAP 2014

#1. Overview

Polylactide Degradation Mechanism

Hydrolysis via Random Chain Scission of Ester Bonds

Overview of ABSORB Studies

What did we learn from 2-year follow-up of ABSORB cohort A ?

Bioresorption does occur

- •Late enlargement of lumen, as a result of plaque shrinkage, has been documented
- Vasomotion and endothelial function can be restored in the scaffolded segment
- Stented lesion can be assessed by non-invasive imaging
- Restenosis and thrombosis have not been seen up to 5 years, despite discontinuation of clopidogrel

ABSORB A - 5 Year Clinical Results

Hierarchical	6 Months 30 Patients	12 Months 29 Patients*	4 Years 29 Patients*	5 Years 29 Patients*	
Ischemia Driven MACE, %(n)	3.3% (1)*	3.4% (1)*	3.4% (1)*	3.4% (1)*	
Cardiac Death, %	0.0%	0.0%	0.0%	0.0%	
MI, %(n)					
Q-Wave MI	0.0%	0.0%	0.0%	0.0%	
Non Q-Wave MI	3.3% (1)**	3.4% (1)**	3.4% (1)**	3.4% (1)**	
Ischemia Driven TLR , %					
by PCI	0.0%	0.0%	0.0%	0.0%	
by CABG	0.0%	0.0%	0.0%	0.0%	

No new MACE events between 6 months and 5 years No scaffold thrombosis up to 5 years

One patient withdrew consent after 6 months

**This patient also underwent a TLR, not qualified as ID-TLR (DS = 42%) followed by post-procedural troponin qualified as non-Q MI and died from his Hodgkin's disease at 888 days post-procedure. Sealing and shielding of plaques as a result of scaffold implantation : can the scaffold cap the plaque?
60 Months Follow up

ABSORB cohort A (n=30)

QCA, IVUS, OCT, IVUS VH

Cohort A (N=30)	Baseline	6 Months	12 Months	18 Months	2 Years	3 Years	4 Years	5 Year	s
	MSCT								

5-Year Follow-up OCT of ABSORB A

Metal vs Bioresorbable scaffold by MSCT

- Absorbable and metal stent implantation (bail-out)
- Highly attenuating distal metal stent well visible
- Only prox./dist. markers absorbable stent detectable
- In-stent plaque remains visible

*marker

Quantitative Assessment of MSCT

Scaffolded segment (Median values) Minimum Lumen area, mm² Mean lumen area, mm² Mean vessel area, mm² Mean plaque area, mm²

	15	20	25 mm ²
18 months (n=18)		5 year (n=18)	p
3.10	=	3.25	0.21
4.47	=	4.29	0.11
13.17		11.93	0.26
8.23	Z	7.10	0.23

How we do it: MSCT- noninvasive FFR

Overview of the FFR_{CT} Process

Why we do it: MSCT- noninvasive FFR Moderate restenosis

Onuma et al. JACC interv 2013

Why we do it: MSCT- noninvasive FFR Moderate restenosis

Onuma et al. JACC interv 2013

Why we do it: MSCT- noninvasive FFR

0.7

0.87

0.93

Moderate restenosis

0.87

Non-invasive FFR could further improve the interpretation of quantitative MSCT results.

Onuma et al. JACC interv 2013

ABSORB cohort **B**

True-serial changes in percentage hyper-echogenic area

(%)

*P<0.05 vs post-procedure, 🕆 P<0.05 vs. 6M(B1)/12M(B2)

The actual duration of resorption of the second generation is in vivo approximately 18 months longer than the first generation, and the mass loss of 2nd generation ABSORB scaffold takes approximately 36 months

Serial QCA without TLR cases

Serruys, Onuma et al. Eurointervention 2014

А

Serial OCT

- The mean and minimum scaffold area's significantly increase between 1 and 3 years and compensate for the increase in neointimal hyperplasia
- As a consequence, mean lumen area and minimal lumen area remained unchanged between 1 year to 3 years.

Serial IVUS

The Vessel area and total plaque/media area show biphasic changes with an increase between BL and the second year and a plaque/Media /Vessel area reduction between the second and third FUP.

The mean scatfold a significantly increases resulting in an increase of mean lumen area from 1 to 3 years with an unchanged minimal lumen area from 1 year to 3 years.

The next cartoon summarizes the evolution

KM Estimate of MACE Rate in Patients Treated with Absorb vs Patients Treated with a Single 3.0x18mm Metallic XIENCE V

Time Post Index Procedure (Months)

Time After Index Procedure (days)									
	0	37	194	284	393	573	758	1123	1488
ABSORB BVS (B1 + B2) At Risk	101	99	96	96	94	92	91	88	86
XV(3.0 x 18mm subgroup, SPI+SPII+SPIII RCT) At Risk	227	224	219	211	204	202	191	182	174

P-values are not from formal hypotheses testing and are displayed for exploratory purposes only

Conclusion

In cohort A, serial imaging at 6M, 24M and 60M showed:

- Serial non-invasive MSCT is feasible with an option of functional assessment
- Golden tube: Homogeneous light reflectivity on OCT, Capping of the underlying plaque, Late lumen enlargement, plaque reduction and Vasomotion

In cohort B, imaging at 3 years showed:

- Advanced bioresorption of the polymeric device (IVUS echogenicity/VH)
- Unchanged angiographic late luminal loss between 1 and 3 years (Binary Reste: 6%)
- Increase of the mean and minimum scaffold area, compensating for the increase in neointimal hyperplasia (IVUS and OCT)
- Increase of mean lumen area from 1 to 3 years (IVUS)
- The total plaque area shows a biphasic change with an increase between 1 and 2 years (IVUS) and decrease between the 2nd and 3rd year follow-up (IVUS)