BTK Severe Ca++: Technical Challenges & Implications

Breakfast with Experts

Krishna Rocha-Singh, MD, FACC Prairie Heart Institute Springfield, IL

Severe Ca++: Technical Considerations & Clinical Implications

Lecture Goals: A Call to Arms

- Review the pathogenesis of vascular Ca++ and challenges to its classification
- Discuss current endovascular approaches to severe BTK calcification
- Consider the potential impact of severe vascular Ca++ on emerging technologies (i.e., DEBs)

What Would You Do?

- 67 yr old BF, s/p CABG, R CEA, DM with RC 4 Lt 1st toe pain
- Non-compressible ABIs; abnormal PVRs
- Up-stream left CFA and SFA angiography revealed the following:

Severe Ca++ via DSA

<u>WHAT</u> Would YOU Do and <u>WHY</u>?

1. PTA + adjunct stenting 2. Primary nitinol stent implantation 3. Fox Hollow[®] atherectomy with DP + PTA 4. CFA endarterectomy + patch angioplasty

Vascular Calcification: It's Harder Than You Think!

Rocha-Singh CCI 2013

Severe BTK Ca++ in a 32 y/o Diabetic with ESRD

An Important Dichotomy:

Intimal vs. Medial Vascular Calcification

	Intimal calcification	Medial calcification		
Calcification pattern	Atherosclerosis Focal, in plaques	Arteriosclerosis or Mönckeberg's sclerosis Generalized		
	C. C			
Risk factors	Dyslipidemia, hypercholesterolemia Lipid accumulation	Aging, diabetes, renal failure, osteoporosis, hypertension		
Molecular mechanisms	Foam cell formation Inflammation Oxidative stress Apoptosis	Transdifferentiation of VSMCs into bone-like cells (osteoblast-chondrocyte and osteoclast-like cells) Ca, P, vitamin D metabolism Loss of calcification inhibitors (pyrophosphate, MGP, fetuin)		
Consequences	Plaque formation: stenosis Plaque calcification: controversial effect on plaque stability, possibly relating to the localization of Calcification	Arterial stiffening: increased pulse pressure, elevated pulse wave velocity		
Complications	Ischemia, infarction	Systolic hypertension, LVH		

Question: What is *'Severe'* Calcification?

- Unlike the coronary bed, there is NO standardized, validated calcium scoring system tied to acute procedural, 30 d or long term (i.e., 12 mo.) clinical outcomes
- Most, if not all, US device regulatory trials exclude "severe" calcification
- However, medical conditions associated with severe vascular calcification are increasing...DM and CKD

How Should Vascular Calcification Be Graded?

- By its fluoroscopic appearance?
- Its angiographic appearance?
- Its IVUS signature?
- By CTA?
- Or, retrospectively based on its acute and long term clinical outcomes?

The question remains unanswered

Impact of Ca++: Dissections, Incomplete Stent Expansion, ?Drug Penetration

BTK Vessel Recoil Post PTA

Tibial Artery Diameters at Baseline and Extent of Early Recoil in 30 CLI Patients Undergoing Tibial Balloon Angioplasty Stratified for

Diabetic vs. Non-Diabetic Patients

	Total (n=30)	Diabetics (n=15)	Non-Diabetics (n=15)	р
RVD				
ATA, mm	2.60 ± 0.69	2.51±0.68	2.65 ± 0.74	0.95
PTA, mm	2.52±0.73	2.53±0.85	2.51±0.72	0.75
TPT / PA, mm	2.78±0.23	2.77±0.24	2.78±0.25	0.92
MLD at baseline				
ATA, mm	0.40 ± 0.52	0.49±0.58	0.34±0.51	0.92
PTA, mm	0.16±0.30	0.15±0.30	0.17±0.34	0.80
TPT / PA, mm	0.05±0.12	$0.02 {\pm} 0.04$	0.11±0.21	0.003
MLD post BA				
ATA, mm	2.10±0.53	1.84±0.36	2.26 ± 0.57	0.43
PTA, mm	1.85±0.45	1.63±0.09	2.08 ± 0.56	0.006
TPT / PA, mm	1.98 ± 0.55	1.82 ± 0.54	2.29±0.52	0.83
MLD at 15 minutes				
ATA, mm	1.62 ± 0.43	1.45 ± 0.37	1.73 ± 0.44	0.78
PTA, mm	1.38 ± 0.38	1.11±0.13	1.65 ± 0.36	0.09
TPT / PA, mm	1.33 ± 0.36	1.20 ± 0.34	1.59 ± 0.27	0.56
Elastic recoil at 15 minutes	\frown			
ATA, %	27.0±9.8	28.1±10.1	26.4±9.1	0.59
PTA, %	29.0±8.3	35.1±10.6	22.9±7.5	0.02
TPT / PA, %	33.1±5.7	34.2±10.7	30.9±8.8	0.03

Continuous data are presented as the means ± standard deviation; categorical data are given as the counts (percentage). RVD: reference vessel diameter, ATA: anterior tibial artery, PTA: posterior tibial artery, TPT: tibioperoneal trunk, PA: peroneal artery, MLD: minimal lumen diameter, BA: balloon angioplasty.

Baumann J Endo Ther 2014

What Do Emerging Data Tell Us About the Impact of Vascular Calcification on Clinical Outcomes?

Few peer-reviewed, core lab adjudicated data which *specifically* address the impact of "severe" Ca++ on acute/long-term clinical results...until the recent release of the IN.PACT DEEP BTK Trial of DEB v. PTA for CLI

Baseline Angiographic Characteristics

	DEB (N=239)	РТА (N=119)	Р			
Lesions (N)	351	181	0.443			
Inflow					DEB	
impaired (≥50%, lab reported)	40.7% (96/236)	28.8% (34/118)	0.035	Calcium	(N-350)	
impaired (site	25.1% (60/239)	22.7% (27/119)	0.695	none	35.1%	
reported) restored (<30%, site reported)	96.7% (58/60)	100.0% (27/27)	1.000	moderate heavy	51.1% 13.7%	
Pedal-loop	E 40/ (40/000)			Thrombus	0.6%	
complete	5.4% (13/239)	7.6% (9/119)	0.050	Anou yom	0.3 /0	
ncomplete no Pedal-loop	78.2% (1877239) 7.1% (17/239)	70.6% (84/119) 11.8% (14/119)	0.356		4	
N/A	9.2% (22/239)	10.1% (12/119)		~60-659	~ % had	
Target Vessel				or 'seve	ere' ve	
anterior tibial	39.9% (140/351)	42.0% (76/181)	0.643	Ca++ a	s adiu	
posterior tibial	22.2% (78/351)	21.0% (38/181)	0.825	core la	b	
peroneal	25.1% (88/351)	26.5% (48/181)	0.753			
TPT	18.8% (66/351)	16.6% (30/181)	0.554			

	DEB	РТА	
	(N=350)	(N=181)	Р
Calcium none moderate heavy	35.1% 51.1% 13.7%	32.0% 57.5% 10.5%	0.332
hrombus	0.6%	0.0%	0.550
neurysm	0.3%	0.0%	1.000

'moderate' ssel wall dicated by a

Baseline Angiographic Characteristics DEB

ΡΤΑ

	DEB	РТА			(N=239)	(N=119)	p
	(N=239)	(N=119)	p	Post-dilation	10.3%	8.5%	0 188
RVD (mm±SD)	2.46 ± 0.69	2.41 ± 0.56	0.304	i ost-unation	(37/359)	(16/189)	0.400
				Stenting	3.9%	2.6%	0.446
Target Lesion				Procedural	9.7%	3.4%	
Mean length (cm ±	10.2 ± 9.1	12.9 ± 9.5	0.002	complications	(23/238)	(4/119)	0.035
%DS (% ± SD)	83.9 ± 16.9	86.6 ± 15.7	0.078	Distal	2.8%	0.6%	0 476
Occlusion (%)	38.6%	45.9%	0.114	embolization	(9/319)	(1/169)	0.170
MLD (mm ± SD)	0.42 ± 0.49	0.34 ± 0.43	0.075	Post proc	12.3%	19.2%	0.046
Dro dilatation	90.5%	36.0%	- 001	dissections	(42/342)	(34/177)	0.040
Pre-unatation	(325/359)	(68/189)	<.001	Technical	93.2%	88.4%	0.051
nfl. time (sec±SD)	166.0 ±	137.7 ±	0.010	Success ^[3]	(331/355)	(167/189)	0.037
[1]	138.4	111.3	0.010	Device	98.0%	96.3%	0 221
(max) Infl. P	95 + 24	10.3 ± 4.6	0.010	Success ^[4]	(348/355)	(182/189)	0.224
(atm±SD)			0.010	Procedural	98.3%	100.0%	0 155
1. Total Inflation: tim	ne of treatment devic	Success ^[5]	(234/238)	(119/119)	0.155		

- 2. Excluding post-procedure dissections
- 3. Technical Success: Successful vascular access and completion of the endovascular procedure and immediate morphological success with \leq 50% residual DS by Angio
- 4. Device Success: exact deployment of the device according to the IFU as documented with suitable imaging modalities and in case of DSA, in at least 2 different imaging projections
- 5. Procedural Success: combination of technical success, device success and absence of procedural complications

Angio Cohort Outcomes

	12-month Outcomes	DEB	ΡΤΑ	p	
	Mean Lesion Length (mm±SD)	59.1 ± 41.7	79.7 ± 74.6	0.060	
	Binary (50%) Rest. Rate (%)	41.0% (25/61)	35.5% (11/31)	0.609	
	Occlusion Rate (%)	11.5% (7/61)	16.1% (5/31)	0.531	
	Longitudinal Restenosis (%) ^[2]	62.7 ± 56.2	93.2 ± 60.8	0.167	
Revalidated Lumen Loss [3]		DEB	РТА	p	
12	-month LLL (mm, mean <u>+</u> SD)	0.51 ± 0.66	0.60 ± 0.97	0.654	

1. Angio Cohort, Corelab adjudicated. Angiogaphic Imaging 12-month FU compliance = 70.9% (DEB) vs. 71.4% (PTA)

2. Mean % of stenosis length vs. treated lesion length \pm SD (Angiographic Cohort, ITT)

3. As evaluated by additional angiographic core laboratory (Beth Israel Deconess Medical Center, Boston, MA) to confirm earlier analysis

The Potential of Atherectomy

- There is no pre-defined requirement of endoprosthesis use
- Adjunct technology use or 'stand alone' use is possible
- Side-branches are generally preserved
- "Vessel wall preparation" concept is a reemerging
- Unfortunately, few technologies have addressed 'severe' Ca++ head-on in well designed trials/registries

Atherectomy Devices: A Few Samples

CSI Diamond Back 360

Pathway JetStream

On the Horizon: Calcified Plaque Modification?

Shockwave Lithoplasty[™] System

Calcified Plaque Modification?

Powerful impact outside the balloon

Very effective at low pressure

Impact travels *through* balloon wall

Effective at *sub-nominal* pressure

Sample FIM Results

Reference Pre-Treatment

Reference Pre-Treatment

Post Lithoplasty™ @ 0.5 atm, <u>before dilation</u> to reference

Sample FIM Results

Reference Pre-Treatment

Post Lithoplasty™ @0.5atm, <u>before dilation</u> to reference

Post Lithoplasty™ @0.5atm, post dilation to reference

Post Lithoplasty™, Post Dilation @ 6.0atm

The Clinical Challenge of Severe Vascular Calcification

- Severe vascular Ca++ is NOT going away...
- Prospective, adjudicated, device-specific clinical outcomes are needed to assist in optimizing patient selection for specific endovascular/surgical approaches
- The potential impact of severe Ca++ on emerging technologies requires our careful attention and further study.

